In this study,based on MERRA-2 reanalysis data and a multi-algorithm integrated atmospheric river(AR)iden-tification method,the authors reveal the cross-seasonal regulation mechanism of El Niño-Southern Oscillati...In this study,based on MERRA-2 reanalysis data and a multi-algorithm integrated atmospheric river(AR)iden-tification method,the authors reveal the cross-seasonal regulation mechanism of El Niño-Southern Oscillation(ENSO)on winter-spring AR activities in East Asia.The results show that ENSO asymmetrically modulates AR ac-tivity through teleconnection and hysteresis effects,and has significant enhancement/inhibition effects on ARs in different regions.At the onset of El Niño,enhanced southwesterly flow at the western edge of the western Pacific subtropical high(WPSH)leads to enhanced AR activity in the western Pacific,and anomalous southerly winds in the Indian Ocean promote northward transport of water vapor in the Arabian Sea and Bay of Bengal.With a three-month lag,the weakening and eastward retreat of the WPSH weakens the low-latitude AR activity,but persistent southerly winds in the Bay of Bengal maintain the AR activity over Southwest China.The mid-to high-latitude AR response exhibits delayed dynamics,initially dominated by the synergistic effect of the southward deviation of the upper-air rapids and the low-level convergence(double-rapid-flow effect)and later modulated by the Pacific-North American teleconnection(PNA)-triggered East Asian ridge,which enhances the precipitation efficiency through prolonged frontal activity and enhanced cold-warm airmass convergence.Overall,El Niño promotes the development of low-and midlatitude AR activity in East Asia,while La Niña promotes(maritime continental)AR activity in the tropics.This study establishes the“ENSO teleconnection→circulation adjust-ment→East Asian AR response”chain,revealing a cross-seasonal lagged response mechanisms of East Asian AR activity,and provides a theoretical basis for winter and spring climate prediction and extreme precipitation forecasting.展开更多
Currently,there is a lack of in-situ or model test results for cone penetration tests(CPTs)conducted in deep,dense sand layers under high overburden stresses,restricting the development of empirical relationships betw...Currently,there is a lack of in-situ or model test results for cone penetration tests(CPTs)conducted in deep,dense sand layers under high overburden stresses,restricting the development of empirical relationships between CPT results and the characteristics of such deep,dense sand layers.This study addresses this gap by proposing an empirical relationship to predict the relative density of dense silica sand based on stress level and cone tip resistance.The relationship was developed through CPTs performed in a calibration chamber using dense sand specimens(with relative densities of 74%-91%)subjected to high stresses(under overburden stresses of 0.5-2.0 MPa)and numerical simulations employing the large deformation finite element method.The Arbitrary Lagrangian Eulerian method was used to regularly regenerate the mesh to prevent soil element distortion around the cone tip.Additionally,the modified Mohr-Coulomb model was integrated to capture the stress-strain behavior of dense silica sand under high stresses.A reasonable agreement was achieved between the numerical and experimental penetration profiles,which verifies the reliability of the numerical model.A sufficient number of parametric analyses were carried out,and then an empirical equation was proposed to establish the relationship between the relative density of dense sand,stress level and cone resistance.The empirical equation provides predictions with acceptable accuracy,as the discrepancies between the predicted and measured relative density values fall within±30%.展开更多
This study examined the development of technician teams on large-scale instrument platforms in universities,using the State Key Laboratory of Natural and Biomimetic Drugs in the Peking University School of Pharmaceuti...This study examined the development of technician teams on large-scale instrument platforms in universities,using the State Key Laboratory of Natural and Biomimetic Drugs in the Peking University School of Pharmaceutical Sciences as a case study.Data were collected through questionnaire surveys and interviews conducted in 2017,followed by a questionnaire survey in 2023,offering both subjective and objective insights.The evolution of the platform’s technician team over the past 5 years was analyzed,highlighting key experiences and identifying ongoing challenges.Recommendations to enhance technician team development include recruiting skilled faculty,clearly defining job responsibilities,and refining the assessment and incentive systems.展开更多
In areas with a complex surface,the acquisition and processing of seismic data is a great challenge.Although elevation-static corrections can be used to eliminate the influences of topography,the distortions of seismi...In areas with a complex surface,the acquisition and processing of seismic data is a great challenge.Although elevation-static corrections can be used to eliminate the influences of topography,the distortions of seismic wavefields caused by simple vertical time shifts still greatly degrade the quality of the migrated images.Ray-based migration methods which can extrapolate and image the wavefields directly from the rugged topography are efficient ways to solve the problems mentioned above.In this paper,we carry out a study of prestack Gaussian beam depth migration under complex surface conditions.We modify the slant stack formula in order to contain the information of surface elevations and get an improved method with more accuracy by compositing local plane-wave components directly from the complex surface.First,we introduce the basic rules and computational procedures of conventional Gaussian beam migration.Then,we give the original method of Gaussian beam migration under complex surface conditions and an improved method in this paper.Finally,we validate the effectiveness of the improved method with trials of model and real data.展开更多
The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This...The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based on systematical simulations with different dipping angles and anisotropy in homogenous TI media, slowness estimation charts are established to quantitatively determine the slowness at any dipping angle and for any value of the anisotropic ratio. Synthetic examples with different acoustic logging tools and different elastic parameters demonstrate that the acoustic slowness estimation method can be conveniently applied to horizontal and deviated wells in TI formations with high accuracy.展开更多
基金supported by the National Natural Science Foundation of China[grant number 41830964]the Natural Science Foundation of Hunan Province[grant number 2023JJ40666]。
文摘In this study,based on MERRA-2 reanalysis data and a multi-algorithm integrated atmospheric river(AR)iden-tification method,the authors reveal the cross-seasonal regulation mechanism of El Niño-Southern Oscillation(ENSO)on winter-spring AR activities in East Asia.The results show that ENSO asymmetrically modulates AR ac-tivity through teleconnection and hysteresis effects,and has significant enhancement/inhibition effects on ARs in different regions.At the onset of El Niño,enhanced southwesterly flow at the western edge of the western Pacific subtropical high(WPSH)leads to enhanced AR activity in the western Pacific,and anomalous southerly winds in the Indian Ocean promote northward transport of water vapor in the Arabian Sea and Bay of Bengal.With a three-month lag,the weakening and eastward retreat of the WPSH weakens the low-latitude AR activity,but persistent southerly winds in the Bay of Bengal maintain the AR activity over Southwest China.The mid-to high-latitude AR response exhibits delayed dynamics,initially dominated by the synergistic effect of the southward deviation of the upper-air rapids and the low-level convergence(double-rapid-flow effect)and later modulated by the Pacific-North American teleconnection(PNA)-triggered East Asian ridge,which enhances the precipitation efficiency through prolonged frontal activity and enhanced cold-warm airmass convergence.Overall,El Niño promotes the development of low-and midlatitude AR activity in East Asia,while La Niña promotes(maritime continental)AR activity in the tropics.This study establishes the“ENSO teleconnection→circulation adjust-ment→East Asian AR response”chain,revealing a cross-seasonal lagged response mechanisms of East Asian AR activity,and provides a theoretical basis for winter and spring climate prediction and extreme precipitation forecasting.
基金National Natural Science Foundation of China(Nos.42025702,52394251)。
文摘Currently,there is a lack of in-situ or model test results for cone penetration tests(CPTs)conducted in deep,dense sand layers under high overburden stresses,restricting the development of empirical relationships between CPT results and the characteristics of such deep,dense sand layers.This study addresses this gap by proposing an empirical relationship to predict the relative density of dense silica sand based on stress level and cone tip resistance.The relationship was developed through CPTs performed in a calibration chamber using dense sand specimens(with relative densities of 74%-91%)subjected to high stresses(under overburden stresses of 0.5-2.0 MPa)and numerical simulations employing the large deformation finite element method.The Arbitrary Lagrangian Eulerian method was used to regularly regenerate the mesh to prevent soil element distortion around the cone tip.Additionally,the modified Mohr-Coulomb model was integrated to capture the stress-strain behavior of dense silica sand under high stresses.A reasonable agreement was achieved between the numerical and experimental penetration profiles,which verifies the reliability of the numerical model.A sufficient number of parametric analyses were carried out,and then an empirical equation was proposed to establish the relationship between the relative density of dense sand,stress level and cone resistance.The empirical equation provides predictions with acceptable accuracy,as the discrepancies between the predicted and measured relative density values fall within±30%.
文摘This study examined the development of technician teams on large-scale instrument platforms in universities,using the State Key Laboratory of Natural and Biomimetic Drugs in the Peking University School of Pharmaceutical Sciences as a case study.Data were collected through questionnaire surveys and interviews conducted in 2017,followed by a questionnaire survey in 2023,offering both subjective and objective insights.The evolution of the platform’s technician team over the past 5 years was analyzed,highlighting key experiences and identifying ongoing challenges.Recommendations to enhance technician team development include recruiting skilled faculty,clearly defining job responsibilities,and refining the assessment and incentive systems.
基金supported by the National 863 Program of China(Grant No.2007AA060502)the National 973 Program of China(Grant No.2007CB209605)the Graduate Student Innovation Fund of China University of Petroleum(EastChina)(Grant No.S2010-1).
文摘In areas with a complex surface,the acquisition and processing of seismic data is a great challenge.Although elevation-static corrections can be used to eliminate the influences of topography,the distortions of seismic wavefields caused by simple vertical time shifts still greatly degrade the quality of the migrated images.Ray-based migration methods which can extrapolate and image the wavefields directly from the rugged topography are efficient ways to solve the problems mentioned above.In this paper,we carry out a study of prestack Gaussian beam depth migration under complex surface conditions.We modify the slant stack formula in order to contain the information of surface elevations and get an improved method with more accuracy by compositing local plane-wave components directly from the complex surface.First,we introduce the basic rules and computational procedures of conventional Gaussian beam migration.Then,we give the original method of Gaussian beam migration under complex surface conditions and an improved method in this paper.Finally,we validate the effectiveness of the improved method with trials of model and real data.
基金supported by National Natural Science Foundation of China(No.41204094)Science Foundation of China University of Petroleum,Beijing(No.2462015YQ0506)
文摘The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based on systematical simulations with different dipping angles and anisotropy in homogenous TI media, slowness estimation charts are established to quantitatively determine the slowness at any dipping angle and for any value of the anisotropic ratio. Synthetic examples with different acoustic logging tools and different elastic parameters demonstrate that the acoustic slowness estimation method can be conveniently applied to horizontal and deviated wells in TI formations with high accuracy.