A field study was conducted to determine the behavior and distribution of arsenic during the pyrometallurgy process in a typical SKS(Shuikoushan) lead smelter in Hunan province, China. Environmental influences of arse...A field study was conducted to determine the behavior and distribution of arsenic during the pyrometallurgy process in a typical SKS(Shuikoushan) lead smelter in Hunan province, China. Environmental influences of arsenic in selected samples were evaluated. Arsenic contents in all input and output samples vary from 0.11% in raw lead to 6.66% in collected dust-2. More arsenic is volatilized in blast furnace and fuming furnace(73.02% of arsenic input) than bottom blowing furnace(10.29% of arsenic input).There are 78.97%, 13.69%, 7.31% of total arsenic distributed in intermediate materials, stockpiled materials and unorganized emissions, respectively. Matte slag-2, collected dust-1 and secondary zinc oxide are hazardous based on the arsenic concentrations of toxicity characteristic leaching procedure. According to risk assessment code(RAC) guideline, arsenic in collected dust-1 poses a very serious risk to the surrounding environment, arsenic in speiss, matte slag-2, water-quenched slag and secondary zinc oxide show low risk, while arsenic in matte slag-1, collected dust-2 and post dust has no risk to the environment.展开更多
Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system b...Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.展开更多
Small WWTP (wastewater treatment plants) are frequently located, by necessity, in remote and isolated sites, which increases the difficulty of its energy supply. This paper describes a case study which is a step by ...Small WWTP (wastewater treatment plants) are frequently located, by necessity, in remote and isolated sites, which increases the difficulty of its energy supply. This paper describes a case study which is a step by step procedure concerning the evaluation of the wind potential of sites that are dependent of in-situ energy generation, as well as, on the utilization of the potential wind energy in Magoito WWTP. The adopted methodology comprised the collection of one year of in-situ wind data and its validation by comparison with historical data of more than 10 years of a nearby anemometric station. The data provided by the two anemometric stations was statistically treated and allowed the analysis of the results from the two stations. These results are promising in terms of wind availability and velocity. Finally, the study comprised the simulation of the local wind conditions for a considerable larger area in order to find the best site for locating a wind turbine.展开更多
The aim of this study was to perform computational fluid dynamics (CFD) simulations on the airflows at the Hong Kong International Airport (HKIA). In particular, the effects of hangar buildings and terrain were studie...The aim of this study was to perform computational fluid dynamics (CFD) simulations on the airflows at the Hong Kong International Airport (HKIA). In particular, the effects of hangar buildings and terrain were studied to explore the effects of turbulence on flying aircraft, especially during landing. The CFD simulation showed that significant differences in wind speeds may occur between the north and the south runways on the western part of the HKIA under typhoon conditions with a strong north to northwesterly wind. Simulation also showed that the hanger buildings between the two runways on the western side and the nearby terrain could be causing the observed difference in the wind speeds. The results also indicated that these obstacles could cause significant wind speed variations at the western end of the south runway. This may affect the operation of landing aircraft. The CFD results for a typical typhoon case were analyzed and found to match the wind data recorded by an aircraft landing that day.展开更多
This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using ...This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory.展开更多
Electricity generation generally is made in thermal, hydro, geothermal power plants and windfarms/windparks. Because of some advantages such as renewability, low-cost, clean, safe and naturality geothermal and wind en...Electricity generation generally is made in thermal, hydro, geothermal power plants and windfarms/windparks. Because of some advantages such as renewability, low-cost, clean, safe and naturality geothermal and wind energy will have been electricity generation source in the near future. Turkey has hot water springs suitable for electricity generation between 130-242 ~C with natural vapor and hydrothermal alterations in connection with grabens limited to active faults and diffuse young volcanism in Western Anatolia Region. Other renewable energy and electricity generation resource is wind energy. In Turkey electricity generation is made by windfarms/windparks. These parks/farms are generated 1,414.55 MW electricity. The year 2010 electricity general total installed capacity in Turkey is about 49,524.1 MW. According to the total installed capacity, thermal power plants have 65.18%, hydro power plants have 31.97%, geothermal power plants and wind farms have 2.85%. Electricity generation generally was obtained from 15 thermal power plants. In this study high temperature geothermal fields and windparks/windfarms in Turkey which are suitable for electricity generation potential were investigated.展开更多
In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage hap...In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.展开更多
The original internal flooding probabilistic safety analysis (PSA) study of Krsko Nuclear Power Plant (two-loop Pressurized Water Reactor (PWR) plant of Westinghouse design) was performed in mid nineties and lim...The original internal flooding probabilistic safety analysis (PSA) study of Krsko Nuclear Power Plant (two-loop Pressurized Water Reactor (PWR) plant of Westinghouse design) was performed in mid nineties and limited to reactor core damage risk (Level 1 PSA). In 2003, it was, together with other safety and hazard analyses, subject to the Periodic Safety Review (PSR). In the PSR, it was stated that methodological PSA approaches and guidelines have evoluted during the past decade and several observations were provided, concerning the area screening process, residual risk and treatment of plant damage states and risk from radioactivity releases (i.e., Level 2 PSA). In order to address the PSR observations, upgrade ofKrsko NPP internal flooding PSA was undertaken. The area screening process was revisited in order to cover the areas without automatic reactor trip equipment. The model was extended to Level 2. Residual risk was estimated at both Level 1 and Level 2, in terms of core damage frequency (CDF) and large early release frequency (LERF), respectively.展开更多
The characteristics of cloud-to-ground(CG) lightning activity with severe thunderstorm wind(STW) in South and North China are analyzed using CG lightning data, radar data, and serious weather reports. The percentage o...The characteristics of cloud-to-ground(CG) lightning activity with severe thunderstorm wind(STW) in South and North China are analyzed using CG lightning data, radar data, and serious weather reports. The percentage of positive CG(PCG) flashes with STW in North China is larger than that in South China. STW takes place during the period when the total CG and PCG density is increasing fastest. STW also occurs close to the high-value center of CG and PCG density. In North China, the CG and PCG density in the grid of STW maximizes approximately 20 minutes after the STW occurs; while in South China, the PCG density and percentage of PCG in the grid of STW maximizes about 10 minutes before the occurrence of STW. The high-value centers of CG density and PCG density in North China move slightly faster than those in South China, which is opposite to the rate of increasing CG activity.展开更多
Union Hidalgo municipality in Oaxaca State, Mexico, is located in an area with attractive wind potential. For this reason, this paper presents a preliminary study of the technical feasibility of wind power generation ...Union Hidalgo municipality in Oaxaca State, Mexico, is located in an area with attractive wind potential. For this reason, this paper presents a preliminary study of the technical feasibility of wind power generation in Union Hidalgo, by a micro-study with a higher resolution than that used in Wind Resource Atlas of Oaxaea, published in April 2004. In this work, the wind map of Union Hidalgo was generated using the micro-scale model WAsP 9.1, with a resolution of 50 meters. Wind speed and direction data recorded at 15 m and 32 m agl (above ground level) over four years and seven months in a surface anemometer station were used. With Class 7 wind patterns, the results show values that justify the installation of wind turbines to produce electricity in the area. Estimated capacity factors (55% on average) are comparable with those obtained in wind power plants already operating in areas near Union Hidalgo and sites with high wind potential in other parts of the world. The topography of the study area is predominantly flat, and together with the directional behavior of the wind, which comes from the NNW 44% of the time, this favors the introduction of wind power plants in the area.展开更多
The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV...The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.展开更多
This paper investigates the minimum inventory (MI) of human system interfaces (HSIs) (i.e. alarms, controls, and displays) for plant's safe operation and represents the analytic procedure on the MI of HSIs deve...This paper investigates the minimum inventory (MI) of human system interfaces (HSIs) (i.e. alarms, controls, and displays) for plant's safe operation and represents the analytic procedure on the MI of HSIs developed for the digital instrumentation and control (I&C) equipments in the main control room (MCR). The MI of HSIs in the MCR indicates the HSIs that the operator always needs available to: (1) monitor the status; (2) perform and confirm a reactor trip; (3) perform and confirm a controlled shutdown of the reactor; (4) actuate safety related systems; (5) analyze failure conditions of the normal HSIs; (6) implement the plant's emergency operating procedures (EOPs); (7) bring the plant to a safe condition; (8) carry out those operator actions shown to be risk important by the probabilistic risk assessment (PRA). The proposed analytic procedure on the MI of HSIs in this study can be used to (1) identify the MI of HSIs and their design requirements; and (2) address design requirements and implementation for the MI of HSIs. The contribution of this study is to describe the MI of HSIs needed to implement the plant's EOPs, to bring the plant to a safe condition, and to carry out those operator actions shown to be risk important by the PKA.展开更多
At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological ...At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological effects cannot be achieved. In this study, based on investigation of concentrations of six heavy metals(As, Hg, Pb, Cd, Cu, and Zn) in the surface seawater and sediment near the outlet of a zinc factory, located in Huludao City, Liaoning Province, China, a tiered approach consisting of several probabilistic options was used to refi ne ecological risk assessment for the individuals. A mixture of various heavy metals was detected in the surface seawater, and potential ecological risk index(PERI) was adopted to assess the potential ecological risk of heavy metals in the surface sediment. The results from all levels of aquatic ecological risk assessment in the tiered framework, ranging from comparison of single effects and exposure values to the use of distribution-based Hazard Quotient obtained through Monte Carlo simulation, are consistent with each other. Briefl y, aquatic Zn and Cu posed a clear ecological risk, while Cd, Pb, Hg, and As in the water column posed potential risk. As expected, combined ecological risk of heavy metal mixture in the surface seawater was proved signifi cantly higher than the risk caused by any individual heavy metal, calculated using the concept of total equivalent concentration. According to PERI, the severity of pollution by the six heavy metals in the surface sediment decreased in the following sequence: Cd>Hg>As>Pb>Cu>Zn, and the total heavy metals in the sediment posed a very high risk to the marine environment. This study provides a useful mathematical framework for ecological risk assessment of heavy metals.展开更多
In this article, the authors give an overview of different logistics concepts for operation and maintenance of OWPP (offshore wind power plants). These can be generally classified into onshore based and offshore bas...In this article, the authors give an overview of different logistics concepts for operation and maintenance of OWPP (offshore wind power plants). These can be generally classified into onshore based and offshore based concepts. The operation of OWPPs can still be improved as research has shown that the availability of OWPPs is low compared to onshore wind power plants. There are a few tools to calculate operating costs and to evaluate the different concepts. However, most tools have a weak focus on logistics although logistics account for a big share of the costs. The tool the authors are introducing in this article focuses on the logistics processes. It is first explained and then tested with an OWPP scenarin展开更多
This paper presents the modelling, simulation and analysis of the dynamic behaviour of a mixed power network of 2.78 GW including hydro, thermal and wind power plants. The modelling of each power plant is described. T...This paper presents the modelling, simulation and analysis of the dynamic behaviour of a mixed power network of 2.78 GW including hydro, thermal and wind power plants. The modelling of each power plant is described. The set of parameters of the turbine speed governor of the hydroelectric power plant is determined with a specific identification procedure to achieve stable operation for different cases such as interconnected, isolated or islanded operation. The analysis of the stability of the entire mixed islanded power plant is investigated through time domain simulations for different sets of controllers parameters and for different disturbances (load rejection and turbulent wind speed profile).展开更多
基金Project(2011AA061001)supported by the National High Technology Research and Development Program of ChinaProject(51304251)supported by the National Natural Science Foundation of China+1 种基金Project(2013M542141)supported by China Postdoctoral FoundationProject(K1201010-61)supported by Planned Program of Science and Technology of Changsha,China
文摘A field study was conducted to determine the behavior and distribution of arsenic during the pyrometallurgy process in a typical SKS(Shuikoushan) lead smelter in Hunan province, China. Environmental influences of arsenic in selected samples were evaluated. Arsenic contents in all input and output samples vary from 0.11% in raw lead to 6.66% in collected dust-2. More arsenic is volatilized in blast furnace and fuming furnace(73.02% of arsenic input) than bottom blowing furnace(10.29% of arsenic input).There are 78.97%, 13.69%, 7.31% of total arsenic distributed in intermediate materials, stockpiled materials and unorganized emissions, respectively. Matte slag-2, collected dust-1 and secondary zinc oxide are hazardous based on the arsenic concentrations of toxicity characteristic leaching procedure. According to risk assessment code(RAC) guideline, arsenic in collected dust-1 poses a very serious risk to the surrounding environment, arsenic in speiss, matte slag-2, water-quenched slag and secondary zinc oxide show low risk, while arsenic in matte slag-1, collected dust-2 and post dust has no risk to the environment.
基金Major Projects of Gansu Province(No.17ZD2GA010)Power Company Technology Projects of State Grid Corporation in Gansu Province(No.52272716000K)
文摘Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.
文摘Small WWTP (wastewater treatment plants) are frequently located, by necessity, in remote and isolated sites, which increases the difficulty of its energy supply. This paper describes a case study which is a step by step procedure concerning the evaluation of the wind potential of sites that are dependent of in-situ energy generation, as well as, on the utilization of the potential wind energy in Magoito WWTP. The adopted methodology comprised the collection of one year of in-situ wind data and its validation by comparison with historical data of more than 10 years of a nearby anemometric station. The data provided by the two anemometric stations was statistically treated and allowed the analysis of the results from the two stations. These results are promising in terms of wind availability and velocity. Finally, the study comprised the simulation of the local wind conditions for a considerable larger area in order to find the best site for locating a wind turbine.
文摘The aim of this study was to perform computational fluid dynamics (CFD) simulations on the airflows at the Hong Kong International Airport (HKIA). In particular, the effects of hangar buildings and terrain were studied to explore the effects of turbulence on flying aircraft, especially during landing. The CFD simulation showed that significant differences in wind speeds may occur between the north and the south runways on the western part of the HKIA under typhoon conditions with a strong north to northwesterly wind. Simulation also showed that the hanger buildings between the two runways on the western side and the nearby terrain could be causing the observed difference in the wind speeds. The results also indicated that these obstacles could cause significant wind speed variations at the western end of the south runway. This may affect the operation of landing aircraft. The CFD results for a typical typhoon case were analyzed and found to match the wind data recorded by an aircraft landing that day.
文摘This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory.
文摘Electricity generation generally is made in thermal, hydro, geothermal power plants and windfarms/windparks. Because of some advantages such as renewability, low-cost, clean, safe and naturality geothermal and wind energy will have been electricity generation source in the near future. Turkey has hot water springs suitable for electricity generation between 130-242 ~C with natural vapor and hydrothermal alterations in connection with grabens limited to active faults and diffuse young volcanism in Western Anatolia Region. Other renewable energy and electricity generation resource is wind energy. In Turkey electricity generation is made by windfarms/windparks. These parks/farms are generated 1,414.55 MW electricity. The year 2010 electricity general total installed capacity in Turkey is about 49,524.1 MW. According to the total installed capacity, thermal power plants have 65.18%, hydro power plants have 31.97%, geothermal power plants and wind farms have 2.85%. Electricity generation generally was obtained from 15 thermal power plants. In this study high temperature geothermal fields and windparks/windfarms in Turkey which are suitable for electricity generation potential were investigated.
基金Supported by National Science and Technology Pillar Program in the Twelfth Five-Year Plan (No. 2011BAK06B02)National Basic Research Program of China ("973" Program, No. 2012CB026000)
文摘In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.
文摘The original internal flooding probabilistic safety analysis (PSA) study of Krsko Nuclear Power Plant (two-loop Pressurized Water Reactor (PWR) plant of Westinghouse design) was performed in mid nineties and limited to reactor core damage risk (Level 1 PSA). In 2003, it was, together with other safety and hazard analyses, subject to the Periodic Safety Review (PSR). In the PSR, it was stated that methodological PSA approaches and guidelines have evoluted during the past decade and several observations were provided, concerning the area screening process, residual risk and treatment of plant damage states and risk from radioactivity releases (i.e., Level 2 PSA). In order to address the PSR observations, upgrade ofKrsko NPP internal flooding PSA was undertaken. The area screening process was revisited in order to cover the areas without automatic reactor trip equipment. The model was extended to Level 2. Residual risk was estimated at both Level 1 and Level 2, in terms of core damage frequency (CDF) and large early release frequency (LERF), respectively.
基金supported by the China Meteorological Administration (Grant No. GYHY201406002)the Key Program of the Chinese Academy of Sciences (Grant No. 2013CB430100)
文摘The characteristics of cloud-to-ground(CG) lightning activity with severe thunderstorm wind(STW) in South and North China are analyzed using CG lightning data, radar data, and serious weather reports. The percentage of positive CG(PCG) flashes with STW in North China is larger than that in South China. STW takes place during the period when the total CG and PCG density is increasing fastest. STW also occurs close to the high-value center of CG and PCG density. In North China, the CG and PCG density in the grid of STW maximizes approximately 20 minutes after the STW occurs; while in South China, the PCG density and percentage of PCG in the grid of STW maximizes about 10 minutes before the occurrence of STW. The high-value centers of CG density and PCG density in North China move slightly faster than those in South China, which is opposite to the rate of increasing CG activity.
文摘Union Hidalgo municipality in Oaxaca State, Mexico, is located in an area with attractive wind potential. For this reason, this paper presents a preliminary study of the technical feasibility of wind power generation in Union Hidalgo, by a micro-study with a higher resolution than that used in Wind Resource Atlas of Oaxaea, published in April 2004. In this work, the wind map of Union Hidalgo was generated using the micro-scale model WAsP 9.1, with a resolution of 50 meters. Wind speed and direction data recorded at 15 m and 32 m agl (above ground level) over four years and seven months in a surface anemometer station were used. With Class 7 wind patterns, the results show values that justify the installation of wind turbines to produce electricity in the area. Estimated capacity factors (55% on average) are comparable with those obtained in wind power plants already operating in areas near Union Hidalgo and sites with high wind potential in other parts of the world. The topography of the study area is predominantly flat, and together with the directional behavior of the wind, which comes from the NNW 44% of the time, this favors the introduction of wind power plants in the area.
文摘The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.
文摘This paper investigates the minimum inventory (MI) of human system interfaces (HSIs) (i.e. alarms, controls, and displays) for plant's safe operation and represents the analytic procedure on the MI of HSIs developed for the digital instrumentation and control (I&C) equipments in the main control room (MCR). The MI of HSIs in the MCR indicates the HSIs that the operator always needs available to: (1) monitor the status; (2) perform and confirm a reactor trip; (3) perform and confirm a controlled shutdown of the reactor; (4) actuate safety related systems; (5) analyze failure conditions of the normal HSIs; (6) implement the plant's emergency operating procedures (EOPs); (7) bring the plant to a safe condition; (8) carry out those operator actions shown to be risk important by the probabilistic risk assessment (PRA). The proposed analytic procedure on the MI of HSIs in this study can be used to (1) identify the MI of HSIs and their design requirements; and (2) address design requirements and implementation for the MI of HSIs. The contribution of this study is to describe the MI of HSIs needed to implement the plant's EOPs, to bring the plant to a safe condition, and to carry out those operator actions shown to be risk important by the PKA.
基金Supported by the Science and Technology Project of North China Sea Branch of State Oceanic Administration(No.2014B02)
文摘At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological effects cannot be achieved. In this study, based on investigation of concentrations of six heavy metals(As, Hg, Pb, Cd, Cu, and Zn) in the surface seawater and sediment near the outlet of a zinc factory, located in Huludao City, Liaoning Province, China, a tiered approach consisting of several probabilistic options was used to refi ne ecological risk assessment for the individuals. A mixture of various heavy metals was detected in the surface seawater, and potential ecological risk index(PERI) was adopted to assess the potential ecological risk of heavy metals in the surface sediment. The results from all levels of aquatic ecological risk assessment in the tiered framework, ranging from comparison of single effects and exposure values to the use of distribution-based Hazard Quotient obtained through Monte Carlo simulation, are consistent with each other. Briefl y, aquatic Zn and Cu posed a clear ecological risk, while Cd, Pb, Hg, and As in the water column posed potential risk. As expected, combined ecological risk of heavy metal mixture in the surface seawater was proved signifi cantly higher than the risk caused by any individual heavy metal, calculated using the concept of total equivalent concentration. According to PERI, the severity of pollution by the six heavy metals in the surface sediment decreased in the following sequence: Cd>Hg>As>Pb>Cu>Zn, and the total heavy metals in the sediment posed a very high risk to the marine environment. This study provides a useful mathematical framework for ecological risk assessment of heavy metals.
文摘In this article, the authors give an overview of different logistics concepts for operation and maintenance of OWPP (offshore wind power plants). These can be generally classified into onshore based and offshore based concepts. The operation of OWPPs can still be improved as research has shown that the availability of OWPPs is low compared to onshore wind power plants. There are a few tools to calculate operating costs and to evaluate the different concepts. However, most tools have a weak focus on logistics although logistics account for a big share of the costs. The tool the authors are introducing in this article focuses on the logistics processes. It is first explained and then tested with an OWPP scenarin
文摘This paper presents the modelling, simulation and analysis of the dynamic behaviour of a mixed power network of 2.78 GW including hydro, thermal and wind power plants. The modelling of each power plant is described. The set of parameters of the turbine speed governor of the hydroelectric power plant is determined with a specific identification procedure to achieve stable operation for different cases such as interconnected, isolated or islanded operation. The analysis of the stability of the entire mixed islanded power plant is investigated through time domain simulations for different sets of controllers parameters and for different disturbances (load rejection and turbulent wind speed profile).