It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Tight sandstone reservoirs have strong heterogeneity and complex gas-water relationship,causing diffi culty in quantitatively predicting water saturation.Deep learning,combined with rock physics analysis and geostatis...Tight sandstone reservoirs have strong heterogeneity and complex gas-water relationship,causing diffi culty in quantitatively predicting water saturation.Deep learning,combined with rock physics analysis and geostatistics theory,was used to predict water saturation in tight sandstone,focusing on the P_(sh)^(8) in the GFZ area of the Ordos Basin.Results show that:Starting with actual wells where porosity and saturation results are obtained from log interpretations,the relationship between reservoir parameters(porosity and saturation)and elastic properties(P-wave velocity,S-wave velocity,and density)is established through the development of a rock physics model suitable for the region.Under the constraints of geostatistical laws,such as background trends of elastic and reservoir parameters and the vertical variations in logging curves,reservoir conditions(including porosity,saturation,and thickness)are simulated to generate numerous pseudowells and corresponding seismic gathers modeled using the Zoeppritz equation.A convolution neural network is used to train the target curve and predict the target body.The predicted water saturation of the P_(sh)^(8) shows strong agreement with the results from two blind wells,providing a reliable basis for understanding the water saturation(Sw)of tight sandstone.展开更多
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
基金Supported by:CNPC Major Project "Research on Key Technologies for Enhanced Oil Recovery in Tight Sandstone Gas Reservoirs"(No. 2023ZZ25)Gansu Provincial Science and Technology Major Project"Research and Application of Key Technologies for Geophysical Prediction of Natural Gas Reservoirs in Longdong Area"(No. 23ZDGA004)PetroChina Changqing Oilfield Company'Qingshimao gas field water-bearing gas reservoir 3D seismic fine interpretation and well position support'(No.2023QCPJ33)。
文摘Tight sandstone reservoirs have strong heterogeneity and complex gas-water relationship,causing diffi culty in quantitatively predicting water saturation.Deep learning,combined with rock physics analysis and geostatistics theory,was used to predict water saturation in tight sandstone,focusing on the P_(sh)^(8) in the GFZ area of the Ordos Basin.Results show that:Starting with actual wells where porosity and saturation results are obtained from log interpretations,the relationship between reservoir parameters(porosity and saturation)and elastic properties(P-wave velocity,S-wave velocity,and density)is established through the development of a rock physics model suitable for the region.Under the constraints of geostatistical laws,such as background trends of elastic and reservoir parameters and the vertical variations in logging curves,reservoir conditions(including porosity,saturation,and thickness)are simulated to generate numerous pseudowells and corresponding seismic gathers modeled using the Zoeppritz equation.A convolution neural network is used to train the target curve and predict the target body.The predicted water saturation of the P_(sh)^(8) shows strong agreement with the results from two blind wells,providing a reliable basis for understanding the water saturation(Sw)of tight sandstone.