Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,an...Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.展开更多
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum...In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites.展开更多
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ...The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.展开更多
Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclu...Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclusion The elastic solution of a straight dislocation parallel to the quasiperiodic axis in 1D hexagonal quasicrystals was obtained and the generalized Peach Koehler force on a dislocation in quasicrystals was given.展开更多
Past investigations of the hydrodynamic forces on vertical columns have generally been based on rigid structure assumptions.The effects of structural flexibility and geometry characteristics on the hydrodynamic force ...Past investigations of the hydrodynamic forces on vertical columns have generally been based on rigid structure assumptions.The effects of structural flexibility and geometry characteristics on the hydrodynamic force distribution are not well understood.In this study,fluid-structure interaction models are developed for numerical analyses.This modeling technique is verified with an experimental test in the literature using both circular and rectangular cross-sections.A series of material elasticities that present structural properties ranging from rigid to flexible is then used to conduct analyses.This finding indicates that an increase in structural flexibility can decrease the impact force to some extent,but this effect is limited.A concrete bridge pier with fluid flow impact can be considered rigid when it is fixed at the bottom.After that,the effects of the initial downstream water height and the width of water tank on the hydrodynamic force are thoroughly investigated.The results demonstrate that the increase in the downstream water height with a constant upstream water height corresponds to a decreased force.Moreover,the vertical column results in a blockage effect on the fluid flow.The greater the blockage effect,the higher the hydrodynamic force.The blockage effect from the vertical column can be neglected when the tank width is greater than eight times the structural cross-section diameter.展开更多
To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in whi...To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in which reasonable stiffness ratio of the upperchord, middle chord, and lower chord is derived. Then combined with an actual engineering model (1:8similar ratio), the static loading and pseudo-dynamic tests of two models for laminated vierendeeltrass used in transfer story structures are conducted, in which one model adopts reinforcedconcrete, and the other adopts prestressed concrete and shape steel concrete. Seismic behaviors areanalyzed, including inter-story displacement, base shear-displacement skeleton curves, andequivalent viscosity-damping curves. A program is programmed to carry out the elasto-plastic dynamicanalysis, and displacement time-history curves of the two models are derived. The test and analysisresults show that the laminated vierendeel trass with prestressed concrete and shape steel concretehas excellent seismic behaviors. It can solve the disadvantages of laminated vierendeel trussesused in transfer story structures. Finally, some design suggestions are put forward, which can bereferenced by similar engineering.展开更多
The dimension lumber (45mm×90mm×3700mm) of plantation Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) was graded to four different classes as SS, No. 1, No.2 and No.3, according to national lumber ...The dimension lumber (45mm×90mm×3700mm) of plantation Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) was graded to four different classes as SS, No. 1, No.2 and No.3, according to national lumber grades authority (NLGA) for structure light framing and structure joists and planks. The properties of apparent density was determined at 15% moisture content, bending strength and stiffness were tested according to American Society for Testing and Materials (ASTM) D198-99, and dynamic modulus of elasticity (Eusw) was measured by ultrasonic technique, for predicting the flexural properties of different grade lumbers. The results showed that Eosw was larger than the static MOE. The relationship between Eusw and static MOE was significant at 0.01 level, and the determination coefficients (R2) of the four grade lumbers followed the sequence as R^2No.2 (0.616)〉 R^2ss (0.567)〉 R^2No1 (0.366)〉 R^2No.3 (0.137). The R^2 of Fusw and MOR were lower than that of the Etru and MOR for each grade. The Eusw of all the grade lumbers, except No.3-grade, had significant correlation with the static MOE and MOR, thus the bending strengthof those grade lumbers can be estimated by the E The Etru valuesof four grade lumbers followed a sequence as No.2-grade (10.701 GPa) 〉 SS-grade (10.359 GPa) 〉 No.l-grade (9.840 GPa) 〉 No.3-grade (9.554 GPa). For the same grade dimension lumber, its Eusw value was larger than static MOE. Mean values of MOR for four grade lumbers follow a sequence as No.2-grade (48.67 MPa) 〉 SS-grade (48.16 MPa) 〉 No.3-grade (46.55 MPa) 〉 No. 1-grade (43.39MPa).展开更多
In order to control the cross? link forces and the vibration frequencies of the test bed of the full channel gas within the allowable ranges, the analyses of forces and deformation of the test bed was done, for the v...In order to control the cross? link forces and the vibration frequencies of the test bed of the full channel gas within the allowable ranges, the analyses of forces and deformation of the test bed was done, for the variously restrained elastic movable frame and the rigid one, the vibration frequencies were computed respectively by means of the methods of mechanics of materials, elasticity and vibration mechanics, the cross link forces and the vibration frequencies of the test bed were tested. The results of theoretical computation comparatively approach the experimental results. The computational methods could be used to availably estimate the design parameters relevant to the test bed of the full channel gas.展开更多
To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with...To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with varying gangue thicknesses and positions.The response patterns of compressive strength,elastic modulus,pre-peak accumulated energy,elastic energy index,and impact energy index were systematically analyzed.Furthermore,a new index for evaluating the impact tendency of gangue-containing coal was proposed,and its effectiveness was verified.The findings are as follows:(1)As the gangue thickness increases,both the compressive strength and the pre-peak energy of the combined structure decrease,whereas the elastic modulus increases accordingly.When the gangue is located in the lower middle position,the combined structure exhibits the lowest compressive strength and elastic modulus but the highest pre peak energy.(2)As the gangue shifts toward the middle position of the combined structure,the failure mode gradually transitions from comple te“crushing”failure to an incomplete“point-type”failure.As gangue thickness further increases,the failure region evolves from overall failure to localized failure,with the degree of failure shifting from complete to incomplete.The K_(crc)value corresponding to“crushing”complete failure is higher and has a stronger impact tendency compared to“point-type”incomplete failure.(3)The proposed comprehensive impact instability evaluation index K_(crc)for the gangue-coal combined structure has shown a significant positive correlation with compressive strength(R_(c))and impact energy index(K_(E)),further verifyi ng its rationality in comprehensively assessing the impact tendency of gangue-containing coal bodies.Applying this index to the evaluation of gangue-containing coal seams provides a more accurate reflection of their impact tendency compared with the residual energy index,which has a wide range of potential applications and practical significance.展开更多
In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed...In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable.展开更多
Various platelet function tests are currently used to identify responsiveness to antiplatelet therapy. 176 ACS patients were enrolled and Linear regression and Kappa consistency analysis showed there was a significant...Various platelet function tests are currently used to identify responsiveness to antiplatelet therapy. 176 ACS patients were enrolled and Linear regression and Kappa consistency analysis showed there was a significant but moderate correlation between platelet inhibition rate and a significant but fair agreement between high clopidogrel on-treatment platelet reactivity tested by light transmission aggregometry and thrombelastography.展开更多
The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated val...The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated value of lattice constant a0 for CeAg with generalized gradient approximation is 3.713-,which is in better agreement with experimental data than local spin density approximation.The negative energy of formation implies that CeAg with B2 structure is thermodynamically stable phase.The greater separation between the d bands of Ce and Ag results in weaker bond hybridization of Ce d—Ag d,which prevents formation of directional covalent bonding.The three independent elastic constants(C11,C12 and C44) are derived and the bulk modulus,shear modulus,elastic modulus,anisotropy factor,and Poisson ratio are determined to be 57.6 GPa,15.8 GPa,43.4 GPa,3.15 and 0.374,respectively.The elastic constants meet all the mechanical stability criteria.The value of Pugh's criterion is 3.65.The ductility of CeAg is predicted if Pugh's criterion is greater than 1.75.Furthermore,the variations of volume,bulk modulus,heat capacity,and thermal expansion coefficient with temperature and/or pressure were calculated and discussed.展开更多
First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the el...First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33 vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus Gas a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001] [1211] [1010] [1011]EEEE〉〉〉 . The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K.展开更多
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjec...The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjective isolate quantum dot system is used. The calculated results can he directly used to evaluate the conductive band and valence band confinement potential and strain introduced by the effective mass of the charge carriers in strain QD.展开更多
In this paper, a method of transforming volume integrals to boundary integrals is given for complicated loadings such as a i(y)x i and b i(x)y i . In the present method the volume in...In this paper, a method of transforming volume integrals to boundary integrals is given for complicated loadings such as a i(y)x i and b i(x)y i . In the present method the volume integrals are approximately transformed to boundary integrals.展开更多
Aim To study the rules governing pressure distribution of traveling charge under the condition of Lagrange hypothesis. Methods\ The study is based on the laws of conservation of momentum and energy. Results\ The gas ...Aim To study the rules governing pressure distribution of traveling charge under the condition of Lagrange hypothesis. Methods\ The study is based on the laws of conservation of momentum and energy. Results\ The gas flow velocity distribution formula at the back of a projectile and the momentum equation of a traveling charge are deduced, and rules governing their pressure distribution under the Lagrange hypothesis conditions are established. The pressure distribution of a traveling charge is compared with that of a conventional charge. Conclusion\ The pressure distribution in the bore of a traveling charge can be accurately predicted. A parabolic pressure distribution type is revealed.展开更多
基金Inner Mongolia Natural Science Foundation Project(2020LH05028)。
文摘Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.
基金Project(2022J318)supported by the Natural Science Foundation of Ningbo,ChinaProject(2021A1515110525)supported by the Guangdong Basic and Applied Basic Research Foundation,ChinaProject(2022QN05023)supported by the Inner Mongolia Natural Science Foundation Youth Project,China。
文摘In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites.
基金Projects(52008403,52378421)supported by the National Natural Science Foundation of ChinaProject(2022-Key-10)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(202207)supported by the Hunan Provincial Transportation Science and Technology,China。
文摘The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.
文摘Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclusion The elastic solution of a straight dislocation parallel to the quasiperiodic axis in 1D hexagonal quasicrystals was obtained and the generalized Peach Koehler force on a dislocation in quasicrystals was given.
基金The National Natural Science Foundation of China(No.52222804,U21A20154).
文摘Past investigations of the hydrodynamic forces on vertical columns have generally been based on rigid structure assumptions.The effects of structural flexibility and geometry characteristics on the hydrodynamic force distribution are not well understood.In this study,fluid-structure interaction models are developed for numerical analyses.This modeling technique is verified with an experimental test in the literature using both circular and rectangular cross-sections.A series of material elasticities that present structural properties ranging from rigid to flexible is then used to conduct analyses.This finding indicates that an increase in structural flexibility can decrease the impact force to some extent,but this effect is limited.A concrete bridge pier with fluid flow impact can be considered rigid when it is fixed at the bottom.After that,the effects of the initial downstream water height and the width of water tank on the hydrodynamic force are thoroughly investigated.The results demonstrate that the increase in the downstream water height with a constant upstream water height corresponds to a decreased force.Moreover,the vertical column results in a blockage effect on the fluid flow.The greater the blockage effect,the higher the hydrodynamic force.The blockage effect from the vertical column can be neglected when the tank width is greater than eight times the structural cross-section diameter.
文摘To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in which reasonable stiffness ratio of the upperchord, middle chord, and lower chord is derived. Then combined with an actual engineering model (1:8similar ratio), the static loading and pseudo-dynamic tests of two models for laminated vierendeeltrass used in transfer story structures are conducted, in which one model adopts reinforcedconcrete, and the other adopts prestressed concrete and shape steel concrete. Seismic behaviors areanalyzed, including inter-story displacement, base shear-displacement skeleton curves, andequivalent viscosity-damping curves. A program is programmed to carry out the elasto-plastic dynamicanalysis, and displacement time-history curves of the two models are derived. The test and analysisresults show that the laminated vierendeel trass with prestressed concrete and shape steel concretehas excellent seismic behaviors. It can solve the disadvantages of laminated vierendeel trussesused in transfer story structures. Finally, some design suggestions are put forward, which can bereferenced by similar engineering.
基金Standard system on forestry engineering of Ministry ofScience and Technology ( 2004DEA70900-1).
文摘The dimension lumber (45mm×90mm×3700mm) of plantation Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) was graded to four different classes as SS, No. 1, No.2 and No.3, according to national lumber grades authority (NLGA) for structure light framing and structure joists and planks. The properties of apparent density was determined at 15% moisture content, bending strength and stiffness were tested according to American Society for Testing and Materials (ASTM) D198-99, and dynamic modulus of elasticity (Eusw) was measured by ultrasonic technique, for predicting the flexural properties of different grade lumbers. The results showed that Eosw was larger than the static MOE. The relationship between Eusw and static MOE was significant at 0.01 level, and the determination coefficients (R2) of the four grade lumbers followed the sequence as R^2No.2 (0.616)〉 R^2ss (0.567)〉 R^2No1 (0.366)〉 R^2No.3 (0.137). The R^2 of Fusw and MOR were lower than that of the Etru and MOR for each grade. The Eusw of all the grade lumbers, except No.3-grade, had significant correlation with the static MOE and MOR, thus the bending strengthof those grade lumbers can be estimated by the E The Etru valuesof four grade lumbers followed a sequence as No.2-grade (10.701 GPa) 〉 SS-grade (10.359 GPa) 〉 No.l-grade (9.840 GPa) 〉 No.3-grade (9.554 GPa). For the same grade dimension lumber, its Eusw value was larger than static MOE. Mean values of MOR for four grade lumbers follow a sequence as No.2-grade (48.67 MPa) 〉 SS-grade (48.16 MPa) 〉 No.3-grade (46.55 MPa) 〉 No. 1-grade (43.39MPa).
文摘In order to control the cross? link forces and the vibration frequencies of the test bed of the full channel gas within the allowable ranges, the analyses of forces and deformation of the test bed was done, for the variously restrained elastic movable frame and the rigid one, the vibration frequencies were computed respectively by means of the methods of mechanics of materials, elasticity and vibration mechanics, the cross link forces and the vibration frequencies of the test bed were tested. The results of theoretical computation comparatively approach the experimental results. The computational methods could be used to availably estimate the design parameters relevant to the test bed of the full channel gas.
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+1 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(LH[2024]-026)supported by the Guizhou Science and Technology Plan Project,China。
文摘To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with varying gangue thicknesses and positions.The response patterns of compressive strength,elastic modulus,pre-peak accumulated energy,elastic energy index,and impact energy index were systematically analyzed.Furthermore,a new index for evaluating the impact tendency of gangue-containing coal was proposed,and its effectiveness was verified.The findings are as follows:(1)As the gangue thickness increases,both the compressive strength and the pre-peak energy of the combined structure decrease,whereas the elastic modulus increases accordingly.When the gangue is located in the lower middle position,the combined structure exhibits the lowest compressive strength and elastic modulus but the highest pre peak energy.(2)As the gangue shifts toward the middle position of the combined structure,the failure mode gradually transitions from comple te“crushing”failure to an incomplete“point-type”failure.As gangue thickness further increases,the failure region evolves from overall failure to localized failure,with the degree of failure shifting from complete to incomplete.The K_(crc)value corresponding to“crushing”complete failure is higher and has a stronger impact tendency compared to“point-type”incomplete failure.(3)The proposed comprehensive impact instability evaluation index K_(crc)for the gangue-coal combined structure has shown a significant positive correlation with compressive strength(R_(c))and impact energy index(K_(E)),further verifyi ng its rationality in comprehensively assessing the impact tendency of gangue-containing coal bodies.Applying this index to the evaluation of gangue-containing coal seams provides a more accurate reflection of their impact tendency compared with the residual energy index,which has a wide range of potential applications and practical significance.
文摘In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable.
基金Beijing Higher Education Young Elite Teacher Project(Grant No.YETP0064)from Beijing Municipal Education Commission
文摘Various platelet function tests are currently used to identify responsiveness to antiplatelet therapy. 176 ACS patients were enrolled and Linear regression and Kappa consistency analysis showed there was a significant but moderate correlation between platelet inhibition rate and a significant but fair agreement between high clopidogrel on-treatment platelet reactivity tested by light transmission aggregometry and thrombelastography.
基金Project(2011CB605504) supported by the National Basic Research Program of ChinaProject(50871054) supported by the National Natural Science Foundation of ChinaProject(20093219110035) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated value of lattice constant a0 for CeAg with generalized gradient approximation is 3.713-,which is in better agreement with experimental data than local spin density approximation.The negative energy of formation implies that CeAg with B2 structure is thermodynamically stable phase.The greater separation between the d bands of Ce and Ag results in weaker bond hybridization of Ce d—Ag d,which prevents formation of directional covalent bonding.The three independent elastic constants(C11,C12 and C44) are derived and the bulk modulus,shear modulus,elastic modulus,anisotropy factor,and Poisson ratio are determined to be 57.6 GPa,15.8 GPa,43.4 GPa,3.15 and 0.374,respectively.The elastic constants meet all the mechanical stability criteria.The value of Pugh's criterion is 3.65.The ductility of CeAg is predicted if Pugh's criterion is greater than 1.75.Furthermore,the variations of volume,bulk modulus,heat capacity,and thermal expansion coefficient with temperature and/or pressure were calculated and discussed.
基金Project (11204007) supported by the National Natural Science Foundation of ChinaProject (2012JQ1005) supported by Natural Science Basic Research Plan of Shaanxi Province,ChinaProject (2013JK0638) supported by the Education Committee Natural Science Foundation of Shaanxi Province,China
文摘First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33 vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus Gas a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001] [1211] [1010] [1011]EEEE〉〉〉 . The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K.
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
文摘The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjective isolate quantum dot system is used. The calculated results can he directly used to evaluate the conductive band and valence band confinement potential and strain introduced by the effective mass of the charge carriers in strain QD.
文摘In this paper, a method of transforming volume integrals to boundary integrals is given for complicated loadings such as a i(y)x i and b i(x)y i . In the present method the volume integrals are approximately transformed to boundary integrals.
文摘Aim To study the rules governing pressure distribution of traveling charge under the condition of Lagrange hypothesis. Methods\ The study is based on the laws of conservation of momentum and energy. Results\ The gas flow velocity distribution formula at the back of a projectile and the momentum equation of a traveling charge are deduced, and rules governing their pressure distribution under the Lagrange hypothesis conditions are established. The pressure distribution of a traveling charge is compared with that of a conventional charge. Conclusion\ The pressure distribution in the bore of a traveling charge can be accurately predicted. A parabolic pressure distribution type is revealed.