In the paper, we define(inco) project modules of relatively hereditary torsion theory τ by intersection complement of module and study their properties; secondly, we define the(inco) τ-semisimple ring by(inco)...In the paper, we define(inco) project modules of relatively hereditary torsion theory τ by intersection complement of module and study their properties; secondly, we define the(inco) τ-semisimple ring by(inco) τ-projective module and study their properties. When r is a trivial torsion theory on R-rood, we prove that R is a semisimple ring if and only if R is a(inco) semisimple ring and satisfies(inco) condition.展开更多
基金Supported by the Science and Technology Develop Foundation of Jilin Science and Technology Department(20040506-3)
文摘In the paper, we define(inco) project modules of relatively hereditary torsion theory τ by intersection complement of module and study their properties; secondly, we define the(inco) τ-semisimple ring by(inco) τ-projective module and study their properties. When r is a trivial torsion theory on R-rood, we prove that R is a semisimple ring if and only if R is a(inco) semisimple ring and satisfies(inco) condition.