The phase metastability and precipitation are now considered to be an important strategy in designing Fe-rich high entropy alloys(HEAs).In this study,the influence of silicon addition on the initial and straininduced ...The phase metastability and precipitation are now considered to be an important strategy in designing Fe-rich high entropy alloys(HEAs).In this study,the influence of silicon addition on the initial and straininduced microstructure evolution and related mechanical property of Fe52−xMn27Cr15Co6Six(x=0,0.3,0.5,1.0,1.5,at.%)HEAs was systematically investigated by utilizing the in-depth microstructural characterization coupled with X-ray diffractometer(XRD),secondary electron microscopy(SEM),and transmission electron microscopy(TEM).The addition of Si to Fe52−xMn27Cr15Co6Six HEAs facilitates the triplex structure consisting of fcc-γmatrix,thermally-inducedε-martensite and sigma phase(σ).The lattice distortion energy by Si atoms is suggested to promote the formation ofσphase consisting of Cr,Si and Co and consequently influence the metastability of the matrix.In 0.3 at.%Si HEA,the strain-induced bodycentered tetragonal(bct)-typeα’-martensite were observed at the intersection of bi-directional straininducedε-martensite laths,enhancing the ultimate tensile strength to∼851 MPa from∼618.3 MPa with ductility increment(∼73.1%from∼71%).In 0.3 at.%Si and 0.5 at.%Si alloys,the granular-typeσphase was observed both at grain boundaries and in grain interior,and the size of granular-typeσphase at grain boundary and intra-granularσphase were found to be similar.The deformation mode altered from the transformation-induced plasticity(TRIP)to twinning-induced plasticity(TWIP)with an increase of Si content to 1.5 at.%,due to the enhanced fcc-γstability induced by the compositional modulation driven by increasedσphase formation.The propagation of microcracks inside brittleσphase could be suppressed by homogeneous slip through strain-induced martensite transformation(SIMT)in HEAs with low Si addition of 0.3at.%-0.5 at.%.展开更多
Fe-Cr-Ni austenitic alloys are extensively utilized in the hot-end components of nuclear light water reactors,turbine disks,and gas compressors.However,their low strength at elevated temperatures limits their engineer...Fe-Cr-Ni austenitic alloys are extensively utilized in the hot-end components of nuclear light water reactors,turbine disks,and gas compressors.However,their low strength at elevated temperatures limits their engineering applications.In this study,a novel precipit-ation-strengthened alloy system is developed by incorporating Al and Si elements into a FeCrNi equiatomic alloy.The results indicate that the FeCrNiAl_(x)Si_(x)(at%,x=0.1,0.2)alloys possess heterogeneous precipitation structures that feature a micron-scaleσphase at the grain boundaries and a nanoscale ordered body-centered cube(B2)phase within the grains.An exceptional strength-ductility synergy across a wide temperature range is achieved in FeCrNiAl_(0.1)Si_(0.1)alloys due to grain refinement and precipitation strengthening.Notably,a yield strength of 693.83 MPa,an ultimate tensile strength of 817.55 MPa,and a uniform elongation of 18.27%are attained at 873 K.The dislo-cation shearing mechanism for B2 phases and the Orowan bypass mechanism forσphase,coupled with a high density of nano-twins and stacking faults in the matrix,contribute to the excellent mechanical properties at cryogenic and ambient temperatures.Moreover,the emergence of serratedσphase and micro-twins in the matrix plays a crucial role in the strengthening and toughening mechanisms at inter-mediate temperatures.This study offers a novel perspective and strategy for the development of precipitation-hardened Fe-Cr-Ni austen-itic alloys with exceptional strength-ductility synergy over a broad temperature range.展开更多
本文采用最新文献报道的Ni-Cr、Ni-W和Cr-W二元热力学参数,结合Ni-Cr-W三元体系实验数据,使用相图计算(calculation of phase diagram,CALPHAD)方法进行热力学评估和优化计算,获得了一套自洽的热力学参数,其中σ相的热力学模型为亚点阵...本文采用最新文献报道的Ni-Cr、Ni-W和Cr-W二元热力学参数,结合Ni-Cr-W三元体系实验数据,使用相图计算(calculation of phase diagram,CALPHAD)方法进行热力学评估和优化计算,获得了一套自洽的热力学参数,其中σ相的热力学模型为亚点阵模型:(Cr,Ni,W)_(0.533)(Cr,Ni,W)_(0.333)(Cr,Ni,W)_(0.134)。计算的Ni-Cr-W体系等温截面图(1273、1473、1673和1813 K)和液相面投影图与实验数据匹配较好,说明本工作的热力学数据库能够很好地再现实验结果,对此体系相关的高元合金设计具有参考意义。展开更多
基金financially supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Govern-ment(Nos.RS-2023-00281246 and RS-2024-00398068)the grant(No.360-05-01-PNK9690)by the Department of Hydrogen Materials Evaluation at Korea Institute of Materials Science(KIMS).
文摘The phase metastability and precipitation are now considered to be an important strategy in designing Fe-rich high entropy alloys(HEAs).In this study,the influence of silicon addition on the initial and straininduced microstructure evolution and related mechanical property of Fe52−xMn27Cr15Co6Six(x=0,0.3,0.5,1.0,1.5,at.%)HEAs was systematically investigated by utilizing the in-depth microstructural characterization coupled with X-ray diffractometer(XRD),secondary electron microscopy(SEM),and transmission electron microscopy(TEM).The addition of Si to Fe52−xMn27Cr15Co6Six HEAs facilitates the triplex structure consisting of fcc-γmatrix,thermally-inducedε-martensite and sigma phase(σ).The lattice distortion energy by Si atoms is suggested to promote the formation ofσphase consisting of Cr,Si and Co and consequently influence the metastability of the matrix.In 0.3 at.%Si HEA,the strain-induced bodycentered tetragonal(bct)-typeα’-martensite were observed at the intersection of bi-directional straininducedε-martensite laths,enhancing the ultimate tensile strength to∼851 MPa from∼618.3 MPa with ductility increment(∼73.1%from∼71%).In 0.3 at.%Si and 0.5 at.%Si alloys,the granular-typeσphase was observed both at grain boundaries and in grain interior,and the size of granular-typeσphase at grain boundary and intra-granularσphase were found to be similar.The deformation mode altered from the transformation-induced plasticity(TRIP)to twinning-induced plasticity(TWIP)with an increase of Si content to 1.5 at.%,due to the enhanced fcc-γstability induced by the compositional modulation driven by increasedσphase formation.The propagation of microcracks inside brittleσphase could be suppressed by homogeneous slip through strain-induced martensite transformation(SIMT)in HEAs with low Si addition of 0.3at.%-0.5 at.%.
基金supported by the National Natural Science Foundation of China(Nos.12072220,12102291,and 12225207)the Science and Technology Innovation Teams of Shanxi Province,China(No.202204051002006)the Central Guidance on Local Science and Technology Development Fund of Shanxi Province,China(No.YDZJSX2021B002).
文摘Fe-Cr-Ni austenitic alloys are extensively utilized in the hot-end components of nuclear light water reactors,turbine disks,and gas compressors.However,their low strength at elevated temperatures limits their engineering applications.In this study,a novel precipit-ation-strengthened alloy system is developed by incorporating Al and Si elements into a FeCrNi equiatomic alloy.The results indicate that the FeCrNiAl_(x)Si_(x)(at%,x=0.1,0.2)alloys possess heterogeneous precipitation structures that feature a micron-scaleσphase at the grain boundaries and a nanoscale ordered body-centered cube(B2)phase within the grains.An exceptional strength-ductility synergy across a wide temperature range is achieved in FeCrNiAl_(0.1)Si_(0.1)alloys due to grain refinement and precipitation strengthening.Notably,a yield strength of 693.83 MPa,an ultimate tensile strength of 817.55 MPa,and a uniform elongation of 18.27%are attained at 873 K.The dislo-cation shearing mechanism for B2 phases and the Orowan bypass mechanism forσphase,coupled with a high density of nano-twins and stacking faults in the matrix,contribute to the excellent mechanical properties at cryogenic and ambient temperatures.Moreover,the emergence of serratedσphase and micro-twins in the matrix plays a crucial role in the strengthening and toughening mechanisms at inter-mediate temperatures.This study offers a novel perspective and strategy for the development of precipitation-hardened Fe-Cr-Ni austen-itic alloys with exceptional strength-ductility synergy over a broad temperature range.
文摘本文采用最新文献报道的Ni-Cr、Ni-W和Cr-W二元热力学参数,结合Ni-Cr-W三元体系实验数据,使用相图计算(calculation of phase diagram,CALPHAD)方法进行热力学评估和优化计算,获得了一套自洽的热力学参数,其中σ相的热力学模型为亚点阵模型:(Cr,Ni,W)_(0.533)(Cr,Ni,W)_(0.333)(Cr,Ni,W)_(0.134)。计算的Ni-Cr-W体系等温截面图(1273、1473、1673和1813 K)和液相面投影图与实验数据匹配较好,说明本工作的热力学数据库能够很好地再现实验结果,对此体系相关的高元合金设计具有参考意义。