Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H con...Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H contains exactly one Hall σi-subgroup of G for every σi ∈σ(G). A subgroup H of G is said to be:σ-permutable or σ-quasinormal in G if G possesses a complete Hall σ-set H such that HAx= AxH for all A ∈ H and x ∈ G:σ-subnormal in G if there is a subgroup chain A = A0≤A1≤···≤ At = G such that either Ai-1■Ai or Ai/(Ai-1)Ai is a finite σi-group for some σi ∈σ for all i = 1,..., t.If Mn < Mn-1 <···< M1 < M0 = G, where Mi is a maximal subgroup of Mi-1, i = 1, 2,..., n, then Mn is said to be an n-maximal subgroup of G. If each n-maximal subgroup of G is σ-subnormal(σ-quasinormal,respectively) in G but, in the case n > 1, some(n-1)-maximal subgroup is not σ-subnormal(not σ-quasinormal,respectively) in G, we write mσ(G)= n(mσq(G)= n, respectively).In this paper, we show that the parameters mσ(G) and mσq(G) make possible to bound the σ-nilpotent length lσ(G)(see below the definitions of the terms employed), the rank r(G) and the number |π(G)| of all distinct primes dividing the order |G| of a finite soluble group G. We also give the conditions under which a finite group is σ-soluble or σ-nilpotent, and describe the structure of a finite soluble group G in the case when mσ(G)=|π(G)|. Some known results are generalized.展开更多
Letσ={σ_(i)|i∈I}be some partition of all primes P and G a finite group.A subgroup H of G is said to beσ-subnormal in G if there exists a subgroup chain H=H_(0)≤H_(1)≤・・・≤Hn=G such that either H_(i−1)is normal i...Letσ={σ_(i)|i∈I}be some partition of all primes P and G a finite group.A subgroup H of G is said to beσ-subnormal in G if there exists a subgroup chain H=H_(0)≤H_(1)≤・・・≤Hn=G such that either H_(i−1)is normal in Hi or Hi/(H_(i−1))Hi is a finiteσj-group for some j∈I for i=1,...,n.We call a finite group G a T_(σ)-group if everyσ-subnormal subgroup is normal in G.In this paper,we analyse the structure of the T_(σ)-groups and give some characterisations of the T_(σ)-groups.展开更多
Throughout this paper,all groups are finite and G always denotes a finite group;σis some partition of the set of all primes P.A group G is said to beσ-primary if G is aπ-group for someπ∈σ.Aπ-semiprojector of G[...Throughout this paper,all groups are finite and G always denotes a finite group;σis some partition of the set of all primes P.A group G is said to beσ-primary if G is aπ-group for someπ∈σ.Aπ-semiprojector of G[29]is a subgroup H of G such that HN/N is a maximalπ-subgroup of G/N for all normal subgroups N of G.LetП⊆σ.Then we say thatχ={X_(1),...,X_(t)}is aП-covering subgroup system for a subgroup H in G if all members of the setχareσ-primary subgroups of G and for eachπ∈Пwithπ∩π(H)≠φthere are an index i and aπ-semiprojector U of H such that U≤X_(i).We study the embedding properties of subgroups H of G under the hypothesis that G has aП-covering subgroup systemχsuch that H permutes with X^(x)for all X∈χand x∈G.Some well-known results are generalized.展开更多
This article provides an overview of some recent results and ideas relatedto the study of finite groups depending on the restrictions on some systems of theirsections.In particular,we discuss some properties of the la...This article provides an overview of some recent results and ideas relatedto the study of finite groups depending on the restrictions on some systems of theirsections.In particular,we discuss some properties of the lattice of all subgroups ofa finite group related with conditions of permutability and generalized subnormality for subgroups.The paper contains more than 30 open problems which were posed,atdifferent times,by some mathematicians working in the discussed direction.展开更多
基金supported by National Nature Science Foundation of China (Grant No. 11771409)Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences
文摘Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H contains exactly one Hall σi-subgroup of G for every σi ∈σ(G). A subgroup H of G is said to be:σ-permutable or σ-quasinormal in G if G possesses a complete Hall σ-set H such that HAx= AxH for all A ∈ H and x ∈ G:σ-subnormal in G if there is a subgroup chain A = A0≤A1≤···≤ At = G such that either Ai-1■Ai or Ai/(Ai-1)Ai is a finite σi-group for some σi ∈σ for all i = 1,..., t.If Mn < Mn-1 <···< M1 < M0 = G, where Mi is a maximal subgroup of Mi-1, i = 1, 2,..., n, then Mn is said to be an n-maximal subgroup of G. If each n-maximal subgroup of G is σ-subnormal(σ-quasinormal,respectively) in G but, in the case n > 1, some(n-1)-maximal subgroup is not σ-subnormal(not σ-quasinormal,respectively) in G, we write mσ(G)= n(mσq(G)= n, respectively).In this paper, we show that the parameters mσ(G) and mσq(G) make possible to bound the σ-nilpotent length lσ(G)(see below the definitions of the terms employed), the rank r(G) and the number |π(G)| of all distinct primes dividing the order |G| of a finite soluble group G. We also give the conditions under which a finite group is σ-soluble or σ-nilpotent, and describe the structure of a finite soluble group G in the case when mσ(G)=|π(G)|. Some known results are generalized.
文摘Letσ={σ_(i)|i∈I}be some partition of all primes P and G a finite group.A subgroup H of G is said to beσ-subnormal in G if there exists a subgroup chain H=H_(0)≤H_(1)≤・・・≤Hn=G such that either H_(i−1)is normal in Hi or Hi/(H_(i−1))Hi is a finiteσj-group for some j∈I for i=1,...,n.We call a finite group G a T_(σ)-group if everyσ-subnormal subgroup is normal in G.In this paper,we analyse the structure of the T_(σ)-groups and give some characterisations of the T_(σ)-groups.
基金supported by the NNSF of China(No.12171126,11961017)supported by Ministry of Education of the Republic of Belarus(grant 20211328)supported by the BRFFR(grant F20R-291).
文摘Throughout this paper,all groups are finite and G always denotes a finite group;σis some partition of the set of all primes P.A group G is said to beσ-primary if G is aπ-group for someπ∈σ.Aπ-semiprojector of G[29]is a subgroup H of G such that HN/N is a maximalπ-subgroup of G/N for all normal subgroups N of G.LetП⊆σ.Then we say thatχ={X_(1),...,X_(t)}is aП-covering subgroup system for a subgroup H in G if all members of the setχareσ-primary subgroups of G and for eachπ∈Пwithπ∩π(H)≠φthere are an index i and aπ-semiprojector U of H such that U≤X_(i).We study the embedding properties of subgroups H of G under the hypothesis that G has aП-covering subgroup systemχsuch that H permutes with X^(x)for all X∈χand x∈G.Some well-known results are generalized.
文摘This article provides an overview of some recent results and ideas relatedto the study of finite groups depending on the restrictions on some systems of theirsections.In particular,we discuss some properties of the lattice of all subgroups ofa finite group related with conditions of permutability and generalized subnormality for subgroups.The paper contains more than 30 open problems which were posed,atdifferent times,by some mathematicians working in the discussed direction.