Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the...Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.展开更多
The complex Red River fault zone(RRFZ),which is situated in the southwestern region of China and separates the Indochina plate and South China blocks,has diverse seismic activities in different segments.To reveal the ...The complex Red River fault zone(RRFZ),which is situated in the southwestern region of China and separates the Indochina plate and South China blocks,has diverse seismic activities in different segments.To reveal the detailed geometric characteristics of the RRFZ at different sections and to better understand the seismogenic environment,in 2022 and 2023 we deployed 7 seismic dense linear arrays,consisting of 574 nodal stations,across the RRFZ in the northern and southern segments near the towns Midu,Gasa,Zhega,Dazhai,Xinzhai,and Taoyuan.The linear arrays,which extend from 2.4 to 12.5 km in length with station intervals ranging between 40 and140 m,recorded seismic ambient noise for approximately one month.Using the extended range phase shift method,we extract the phase velocity dispersion curves of the Rayleigh waves between 0.9 and 10 Hz,which are then used to invert for the high resolution shearwave velocity structures across the RRFZ beneath the linear arrays.The key findings are:(1)the 7 imaged sections of the RRFZ exhibit quite similar structures,with higher velocities on the SW side and lower velocities on the NE side;the velocity variation is consistent with the surface geological structures along the RRFZ;(2)the shear-wave velocities on the SW side of the RRFZ at the northern Midu section and southern Gasa-Dazhai sections are generally higher than their counterparts in the southern Xinzhai-Taoyuan sections,which reflects lithological variations from the marble-dominated Paleoproterozoic Along basement to the gneiss dominated Paleoproterozoic Qingshuihe basement;(3)from the northern Midu section to the southern region where the RRFZ intersects with the Xiaojiang Fault,the major faults of the RRFZ exhibit a consistent high-angle,NE-dipping structure;(4)the low shear-wave velocities immediately to the NE of the velocity boundary may indicate a faulted zone due to long-term shearing,where excessive amplifications of ground motions could occur.This study provides new insights into the characteristics of the shallow structures of the RRFZ.展开更多
基金supported by China National Science Foundations(Nos.62371225,62371227)。
文摘Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.
基金funded by the National Key Research and Development Project of China(Grant No.2021YFC3000600)the China Earthquake Science Experiment Field-Cross-fault Observation Array-Red River Fault Scientific Drilling Project Geophysical Prospecting Site Selection Project+2 种基金Anhui Province Science and Technology Breakthrough Plan Project(Key Project,202423l10050030)the Earthquake Science and Technology Spark Program of the China Earthquake Administration(XH23020YA)the Anhui Mengcheng National Geophysical Observatory Joint Open Fund(MENGO-202307)。
文摘The complex Red River fault zone(RRFZ),which is situated in the southwestern region of China and separates the Indochina plate and South China blocks,has diverse seismic activities in different segments.To reveal the detailed geometric characteristics of the RRFZ at different sections and to better understand the seismogenic environment,in 2022 and 2023 we deployed 7 seismic dense linear arrays,consisting of 574 nodal stations,across the RRFZ in the northern and southern segments near the towns Midu,Gasa,Zhega,Dazhai,Xinzhai,and Taoyuan.The linear arrays,which extend from 2.4 to 12.5 km in length with station intervals ranging between 40 and140 m,recorded seismic ambient noise for approximately one month.Using the extended range phase shift method,we extract the phase velocity dispersion curves of the Rayleigh waves between 0.9 and 10 Hz,which are then used to invert for the high resolution shearwave velocity structures across the RRFZ beneath the linear arrays.The key findings are:(1)the 7 imaged sections of the RRFZ exhibit quite similar structures,with higher velocities on the SW side and lower velocities on the NE side;the velocity variation is consistent with the surface geological structures along the RRFZ;(2)the shear-wave velocities on the SW side of the RRFZ at the northern Midu section and southern Gasa-Dazhai sections are generally higher than their counterparts in the southern Xinzhai-Taoyuan sections,which reflects lithological variations from the marble-dominated Paleoproterozoic Along basement to the gneiss dominated Paleoproterozoic Qingshuihe basement;(3)from the northern Midu section to the southern region where the RRFZ intersects with the Xiaojiang Fault,the major faults of the RRFZ exhibit a consistent high-angle,NE-dipping structure;(4)the low shear-wave velocities immediately to the NE of the velocity boundary may indicate a faulted zone due to long-term shearing,where excessive amplifications of ground motions could occur.This study provides new insights into the characteristics of the shallow structures of the RRFZ.