With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnair...With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnaire covering six dimensions,including public transportation,sanitation and environment,and supporting facility construction,was designed.A total of 208 valid samples were collected,and SPSS was employed for reliability and validity tests as well as IPA analysis.The findings were as follows:①Visitors were generally quite satisfied with the overall public services in Huilongguan Sports and Cultural Park.②The highest satisfaction levels were observed in sanitation and environment services and the sports and cultural atmosphere,while lower satisfaction was noted for supporting facility construction and public information services.③The advantage enhancement zone includes sanitation and environment services and sports and cultural atmosphere;and the continuous maintenance zone includes public transportation services and security management amd maintenance;the subsequent opportunity zone includes supporting facility construction and public information services;and there are no dimensions in the urgent improvement zone.The study recommends strengthening the service connotations from three aspects:enhancing facilities with sports as the core,optimizing services with a people-centered approach,and upgrading the information platform through technological efficiency.Additionally,a multi-stakeholder collaborative mechanism involving the government in coordinating policy resources,the operator in improving implementation efficiency,and the public participating in supervision and evaluation is proposed to drive the enhancement of public service quality at Huilongguan Sports and Cultural Park.展开更多
The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ...The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.展开更多
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of dril...The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.展开更多
Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical i...Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical in two-phase flow studies.Significant research efforts have focused on discerning flow regimes using various signal analysis methods.In this review,recent advances in time series signals analysis algorithms for stirred tank reactors have been summarized,and the detailed methodologies are categorized into the frequency domain methods,time-frequency domain methods,and state space methods.The strengths,limitations,and notable findings of each algorithm are highlighted.Additionally,the interrelationships between these methodologies have also been discussed,as well as the present progress achieved in various applications.Future research directions and challenges are also predicted to provide an overview of current research trends in data mining of time series for analyzing flow regimes and chaotic signals.This review offers a comprehensive summary for extracting and characterizing fluid flow behavior and serves as a theoretical reference for optimizing the characterization of chaotic signals in future research endeavors.展开更多
In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)deriva...In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.展开更多
The ballistic impact identification method for the helicopter Tail Drive Shaft System(TDSS)isn't yet comprehensive,which affects helicopter flight safety.This paper proposes a ballistic impact identification metho...The ballistic impact identification method for the helicopter Tail Drive Shaft System(TDSS)isn't yet comprehensive,which affects helicopter flight safety.This paper proposes a ballistic impact identification method for the TDSS based on vibration response analysis.Based on the Johnson-Cook constitutive model and failure criteria,the ballistic impact finite element simulation model is established,which is verified by the ballistic impact experiment of the Tail Drive Shaft(TDS).Considering the ballistic impact excitation force,the dynamic model of the TDSS with ballistic impact is established,which is verified by finite element commercial software.If a bullet hits the TDS,the bending vibration displacement increases sharply at a certain moment and then significantly increases but remains stable.Meanwhile,the critical speed component appears in the frequency-domain response of bending vibration,and then the speed component significantly increases but remains stable.What's more,the axis trajectory exhibits a sudden,large-scale,and irregular whirling motion at a certain moment,followed by a significant increase but remains stable.Furthermore,if the axial vibration response is small,the bullet core shooting should be considered vertically or at a small incident angle,otherwise,it should be considered at a large incident angle.展开更多
NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and vel...NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault.展开更多
In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,prov...In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,providing favorable conditions for students’in-depth and efficient learning.Against this backdrop,how to scientifically apply emerging technologies to automatically collect,process,and integrate digital learning resources such as voices,videos,and courseware texts,and better innovate the organization and presentation forms of course knowledge has become an important development direction for“artificial intelligence+education.”This article elaborates on the elements and characteristics of knowledge graphs,analyzes the construction steps of knowledge graphs,and explores the construction methods of multimodal course knowledge graphs from aspects such as dataset collection,course knowledge ontology identification,knowledge discovery,and association,providing references for the intelligent application of online open courses.展开更多
Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development...Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development of the walnut industry.This study was aimed to investigate the impacts of temperature and packaging methods on the storage quality and oxidative stability of walnuts.The Wen 185 walnut variety was selected,and the physical-chemical and nutritional indexes of walnuts stored for 42 weeks under different temperatures(18℃,4℃,and room temperature)and packaging methods(vacuum light-exposed,vacuum light-proof,vacuum-ra-diation light-exposed,vacuum-radiation light-proof,nitrogen-filled light-exposed,nitrogen-filled light-proof)were measured.The results showed that low temperatures,especially18℃,in combination with vacuum lightproof packaging,could effectively suppress the increase in oxidative stability indicators such as acid value(AV)and peroxide value(PV),and maintain high retention rates of nutritional indicators like tocopherol and phytosterol.This study has elucidated that low temperatures and appropriate packaging methods play the crucial roles in maintaining the quality and oxidative stability of walnuts during storage.It has provided comprehensive and valuable data support and theoretical basis for the scientific storage of walnuts,contributing to the devel-opment of the walnut industry and the guarantee of product quality.展开更多
Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implemen...Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.展开更多
Fatigue failure caused by vibration is the most common type of pipeline failure.The core of this research is to obtain the nonlinear dynamic stress of a pipeline system accurately and efficiently,a topic that needs to...Fatigue failure caused by vibration is the most common type of pipeline failure.The core of this research is to obtain the nonlinear dynamic stress of a pipeline system accurately and efficiently,a topic that needs to be explored in the existing literature.The shell theory can better simulate the circumferential stress distribution,and thus the Mindlin-Reissner shell theory is used to model the pipeline.In this paper,the continuous pipeline system is combined with clamps through modal expansion for the first time,which realizes the coupling problem between a shell and a clamp.While the Bouc-Wen model is used to simulate the nonlinear external force generated by a clamp,the nonlinear coupling characteristics of the system are effectively captured.Then,the dynamic equation of the clamp-pipeline system is established according to the Lagrange energy equation.Based on the resonance frequency and stress amplitude obtained from the experiment,the nonlinear parameters of the clamp are identified with the semi-analytical method(SAM)and particle swarm optimization(PSO)algorithm.This study provides a theoretical basis for the clamp-pipeline system and an efficient and universal solution for stress prediction and analysis of pipelines in engineering.展开更多
This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The me...This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.展开更多
Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a ...Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction.Conventional design methodologies such as object-oriented design methodology(OODM)have been proposed for web-based application development,which facilitates code reuse,quantification,and security at the design level.However,OODM did not provide the feature of explainability in web-based decision-making systems.X-OODM modifies the OODM with added explainable models to introduce the explainability feature for such systems.This research introduces an explainable model leveraging X-OODM for designing transparent applications for multidomain sentiment analysis.The proposed design is evaluated using the design quality metrics defined for the evaluation of the X-OODM explainable model under user context.The design quality metrics,transferability,simulatability,informativeness,and decomposability were introduced one after another over time to the evaluation of the X-OODM user context.Auxiliary metrics of accessibility and algorithmic transparency were added to increase the degree of explainability for the design.The study results reveal that introducing such explainability parameters with X-OODM appropriately increases system transparency,trustworthiness,and user understanding.The experimental results validate the enhancement of decision-making for multi-domain sentiment analysis with integration at the design level of explainability.Future work can be built in this direction by extending this work to apply the proposed X-OODM framework over different datasets and sentiment analysis applications to further scrutinize its effectiveness in real-world scenarios.展开更多
The proposal of carbon neutrality target makes decarbonization and hydrogenation typical features of future energy development in China.With a wide range of application scenarios,hydrogen energy will experience rapid ...The proposal of carbon neutrality target makes decarbonization and hydrogenation typical features of future energy development in China.With a wide range of application scenarios,hydrogen energy will experience rapid growth in production and consumption.To formulate an effective hydrogen energy development strategy for the future of China,this study employs the departmental scenario analysis method to calculate and evaluate the future consumption of hydrogen energy in China’s heavy industry,transportation,electricity,and other related fields.Multidimensional technical parameters are selected and predicted accurately and reliably in combination with different development scenarios.The findings indicate that the period from 2030 to 2050 will enjoy rapid development of hydrogen energy,having an average annual growth rate of 2%to 4%.The technological progress and breakthroughs scenario has the greatest potential for hydrogen demand scale among the four development scenarios.Under this scenario,the total demand for hydrogen energy is expected to reach 446.37Mt in 2060.Thetransportation sector will be the sector with the greatest potential for hydrogen deployment growth from 2023 to 2060,which is expected to rise from 0.038Mt to about 163.18Mt,with the ambitious growth in the future.Additionally,hydrogen energy has a considerable development potential in the steel sector,and the trend of de-refueling coke by hydrogenation in this sector will be imperative for this energy-intensive industries.展开更多
A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this wor...A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.展开更多
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para...Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.展开更多
The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analys...The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analysis platform,including online activation and offiine low background High-Purity Germanium(HPGe)detector measurement systems,as an alternative to direct measurement methods and low-throughput cross-tests.Owing to short half-lives spanning from minutes to days and characteristics such as ease of fabrication,cost-effectiveness,and stability,gold(~(197)Au)and zinc(~(64)Zn)emerge as favorable activation targets for theγ-ray beam flux monitor.Notably,they exhibit a multitude of advantages in monitoring theγ-ray beam flux,typically 10^(5)photons/s,with energies of 13.16 Me V to 19.08 Me V using a 3 mm coarse collimator.In particular,high-fluxγ-ray beam experiments can be conducted effectively.展开更多
Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the fle...Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the flexibility of rope-driven robots,the one-way pulling characteristics of the rope,and the floating characteristics of the base,towing robots are easily overturned.First,the spatial configuration of the towing system was established according to the towing task,and the kinematic model of the towing system was established using the coordinate transformation.Then,the dynamic model of the towing system was established according to the rigid-body dynamics and hydrodynamic theory.Finally,the stability of the towing system was analyzed using the stability cone method.The simulation experiments provide a reference for the practical application of the floating multirobot coordinated towing system,which can improve the stability of towing systems by changing the configuration of the towing robot.展开更多
基金Sponsored by The Youth Project of National Social Science Foundation of China(21CTY007)Special Fund for Basic Scientific Research Business Expenses of Central Universities(2024DAWH008).
文摘With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnaire covering six dimensions,including public transportation,sanitation and environment,and supporting facility construction,was designed.A total of 208 valid samples were collected,and SPSS was employed for reliability and validity tests as well as IPA analysis.The findings were as follows:①Visitors were generally quite satisfied with the overall public services in Huilongguan Sports and Cultural Park.②The highest satisfaction levels were observed in sanitation and environment services and the sports and cultural atmosphere,while lower satisfaction was noted for supporting facility construction and public information services.③The advantage enhancement zone includes sanitation and environment services and sports and cultural atmosphere;and the continuous maintenance zone includes public transportation services and security management amd maintenance;the subsequent opportunity zone includes supporting facility construction and public information services;and there are no dimensions in the urgent improvement zone.The study recommends strengthening the service connotations from three aspects:enhancing facilities with sports as the core,optimizing services with a people-centered approach,and upgrading the information platform through technological efficiency.Additionally,a multi-stakeholder collaborative mechanism involving the government in coordinating policy resources,the operator in improving implementation efficiency,and the public participating in supervision and evaluation is proposed to drive the enhancement of public service quality at Huilongguan Sports and Cultural Park.
基金funded by the Bavarian State Ministry of ScienceResearch and Art(Grant number:H.2-F1116.WE/52/2)。
文摘The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金supported by the National Natural Science Foundation of China(52174003,52374008).
文摘The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.
基金the National Natural Science Foundation of China(22078030)the National Key Research and Development Project(2019YFC1905802,2022YFB3504305)+1 种基金the Joint Funds of the National Natural Science Foundation of China(U1802255,CSTB2022NSCQ-LZX0014)the Key Project of Independent Research Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-zd201902).
文摘Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical in two-phase flow studies.Significant research efforts have focused on discerning flow regimes using various signal analysis methods.In this review,recent advances in time series signals analysis algorithms for stirred tank reactors have been summarized,and the detailed methodologies are categorized into the frequency domain methods,time-frequency domain methods,and state space methods.The strengths,limitations,and notable findings of each algorithm are highlighted.Additionally,the interrelationships between these methodologies have also been discussed,as well as the present progress achieved in various applications.Future research directions and challenges are also predicted to provide an overview of current research trends in data mining of time series for analyzing flow regimes and chaotic signals.This review offers a comprehensive summary for extracting and characterizing fluid flow behavior and serves as a theoretical reference for optimizing the characterization of chaotic signals in future research endeavors.
基金extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/174/46.
文摘In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.
基金co-supported by the National Natural Science Foundation of China(No.52275061)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(No.KYCX24_0562)。
文摘The ballistic impact identification method for the helicopter Tail Drive Shaft System(TDSS)isn't yet comprehensive,which affects helicopter flight safety.This paper proposes a ballistic impact identification method for the TDSS based on vibration response analysis.Based on the Johnson-Cook constitutive model and failure criteria,the ballistic impact finite element simulation model is established,which is verified by the ballistic impact experiment of the Tail Drive Shaft(TDS).Considering the ballistic impact excitation force,the dynamic model of the TDSS with ballistic impact is established,which is verified by finite element commercial software.If a bullet hits the TDS,the bending vibration displacement increases sharply at a certain moment and then significantly increases but remains stable.Meanwhile,the critical speed component appears in the frequency-domain response of bending vibration,and then the speed component significantly increases but remains stable.What's more,the axis trajectory exhibits a sudden,large-scale,and irregular whirling motion at a certain moment,followed by a significant increase but remains stable.Furthermore,if the axial vibration response is small,the bullet core shooting should be considered vertically or at a small incident angle,otherwise,it should be considered at a large incident angle.
基金Supported by the Foundation:This research project is jointly supported by Hebei Provincial Science and Technology Program(No.22375406D)The Earthquake Science and Technology Program of Hebei Province(No.DZ2023120500009,DZ2024120500001).
文摘NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault.
基金University-level Scientific Research Project in Natural Sciences“Research on the Retrieval Method of Multimodal First-Class Course Teaching Content Based on Knowledge Graph Collaboration”(GKY-2024KYYBK-31)。
文摘In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,providing favorable conditions for students’in-depth and efficient learning.Against this backdrop,how to scientifically apply emerging technologies to automatically collect,process,and integrate digital learning resources such as voices,videos,and courseware texts,and better innovate the organization and presentation forms of course knowledge has become an important development direction for“artificial intelligence+education.”This article elaborates on the elements and characteristics of knowledge graphs,analyzes the construction steps of knowledge graphs,and explores the construction methods of multimodal course knowledge graphs from aspects such as dataset collection,course knowledge ontology identification,knowledge discovery,and association,providing references for the intelligent application of online open courses.
基金Key Technology Research and Development Program in Autonomous Region(2022A02009)Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development of the walnut industry.This study was aimed to investigate the impacts of temperature and packaging methods on the storage quality and oxidative stability of walnuts.The Wen 185 walnut variety was selected,and the physical-chemical and nutritional indexes of walnuts stored for 42 weeks under different temperatures(18℃,4℃,and room temperature)and packaging methods(vacuum light-exposed,vacuum light-proof,vacuum-ra-diation light-exposed,vacuum-radiation light-proof,nitrogen-filled light-exposed,nitrogen-filled light-proof)were measured.The results showed that low temperatures,especially18℃,in combination with vacuum lightproof packaging,could effectively suppress the increase in oxidative stability indicators such as acid value(AV)and peroxide value(PV),and maintain high retention rates of nutritional indicators like tocopherol and phytosterol.This study has elucidated that low temperatures and appropriate packaging methods play the crucial roles in maintaining the quality and oxidative stability of walnuts during storage.It has provided comprehensive and valuable data support and theoretical basis for the scientific storage of walnuts,contributing to the devel-opment of the walnut industry and the guarantee of product quality.
基金supported by grants received by the first author and third author from the Institute of Eminence,Delhi University,Delhi,India,as part of the Faculty Research Program via Ref.No./IoE/2024-25/12/FRP.
文摘Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.
基金Project supported by the National Science and Technology Major Project(No.J2019-I-0008-0008)the National Natural Science Foundation of China(No.52305096)the Chinese Postdoctoral Science Foundation(No.GZB20230117)。
文摘Fatigue failure caused by vibration is the most common type of pipeline failure.The core of this research is to obtain the nonlinear dynamic stress of a pipeline system accurately and efficiently,a topic that needs to be explored in the existing literature.The shell theory can better simulate the circumferential stress distribution,and thus the Mindlin-Reissner shell theory is used to model the pipeline.In this paper,the continuous pipeline system is combined with clamps through modal expansion for the first time,which realizes the coupling problem between a shell and a clamp.While the Bouc-Wen model is used to simulate the nonlinear external force generated by a clamp,the nonlinear coupling characteristics of the system are effectively captured.Then,the dynamic equation of the clamp-pipeline system is established according to the Lagrange energy equation.Based on the resonance frequency and stress amplitude obtained from the experiment,the nonlinear parameters of the clamp are identified with the semi-analytical method(SAM)and particle swarm optimization(PSO)algorithm.This study provides a theoretical basis for the clamp-pipeline system and an efficient and universal solution for stress prediction and analysis of pipelines in engineering.
基金Financial support of this work by the Technology Development program of China(Grant No.2022204B003)National Natural Science Foundation of China(12272083 and 12172078)the Fundamental Research Funds for the Central Universities(DUT24YJ136)is gratefully acknowledged.
文摘This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.
基金support of the Deanship of Research and Graduate Studies at Ajman University under Projects 2024-IRG-ENiT-36 and 2024-IRG-ENIT-29.
文摘Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction.Conventional design methodologies such as object-oriented design methodology(OODM)have been proposed for web-based application development,which facilitates code reuse,quantification,and security at the design level.However,OODM did not provide the feature of explainability in web-based decision-making systems.X-OODM modifies the OODM with added explainable models to introduce the explainability feature for such systems.This research introduces an explainable model leveraging X-OODM for designing transparent applications for multidomain sentiment analysis.The proposed design is evaluated using the design quality metrics defined for the evaluation of the X-OODM explainable model under user context.The design quality metrics,transferability,simulatability,informativeness,and decomposability were introduced one after another over time to the evaluation of the X-OODM user context.Auxiliary metrics of accessibility and algorithmic transparency were added to increase the degree of explainability for the design.The study results reveal that introducing such explainability parameters with X-OODM appropriately increases system transparency,trustworthiness,and user understanding.The experimental results validate the enhancement of decision-making for multi-domain sentiment analysis with integration at the design level of explainability.Future work can be built in this direction by extending this work to apply the proposed X-OODM framework over different datasets and sentiment analysis applications to further scrutinize its effectiveness in real-world scenarios.
基金supported by the National Natural Science Foundation of China(No.71704178)Beijing Municipal Excellent Talents Foundation(No.2017000020124G133)Major consulting project of the Chinese Academy of Engineering(Nos.2023-JB-08,2022-PP-03).
文摘The proposal of carbon neutrality target makes decarbonization and hydrogenation typical features of future energy development in China.With a wide range of application scenarios,hydrogen energy will experience rapid growth in production and consumption.To formulate an effective hydrogen energy development strategy for the future of China,this study employs the departmental scenario analysis method to calculate and evaluate the future consumption of hydrogen energy in China’s heavy industry,transportation,electricity,and other related fields.Multidimensional technical parameters are selected and predicted accurately and reliably in combination with different development scenarios.The findings indicate that the period from 2030 to 2050 will enjoy rapid development of hydrogen energy,having an average annual growth rate of 2%to 4%.The technological progress and breakthroughs scenario has the greatest potential for hydrogen demand scale among the four development scenarios.Under this scenario,the total demand for hydrogen energy is expected to reach 446.37Mt in 2060.Thetransportation sector will be the sector with the greatest potential for hydrogen deployment growth from 2023 to 2060,which is expected to rise from 0.038Mt to about 163.18Mt,with the ambitious growth in the future.Additionally,hydrogen energy has a considerable development potential in the steel sector,and the trend of de-refueling coke by hydrogenation in this sector will be imperative for this energy-intensive industries.
文摘A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.
基金supported by the National Natural Science Foundation of China(No.41804141)。
文摘Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.
基金supported by National Key Research and Development Program of China(Nos.2022YFA1602404 and2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C152)。
文摘The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analysis platform,including online activation and offiine low background High-Purity Germanium(HPGe)detector measurement systems,as an alternative to direct measurement methods and low-throughput cross-tests.Owing to short half-lives spanning from minutes to days and characteristics such as ease of fabrication,cost-effectiveness,and stability,gold(~(197)Au)and zinc(~(64)Zn)emerge as favorable activation targets for theγ-ray beam flux monitor.Notably,they exhibit a multitude of advantages in monitoring theγ-ray beam flux,typically 10^(5)photons/s,with energies of 13.16 Me V to 19.08 Me V using a 3 mm coarse collimator.In particular,high-fluxγ-ray beam experiments can be conducted effectively.
基金Supported by the National Natural Science Foundation of China under Grant No.51965032the Natural Science Foundation of Gansu Province of China under Grant No.22JR5RA319+2 种基金the Excellent Doctoral Student Foundation of Gansu Province of China under Grant No.23JRRA842the Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance under Grant No.GAMRC2023YB05the Key Research and Development Project of Lanzhou Jiaotong University under Grant No.LZJTUZDYF2302.
文摘Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the flexibility of rope-driven robots,the one-way pulling characteristics of the rope,and the floating characteristics of the base,towing robots are easily overturned.First,the spatial configuration of the towing system was established according to the towing task,and the kinematic model of the towing system was established using the coordinate transformation.Then,the dynamic model of the towing system was established according to the rigid-body dynamics and hydrodynamic theory.Finally,the stability of the towing system was analyzed using the stability cone method.The simulation experiments provide a reference for the practical application of the floating multirobot coordinated towing system,which can improve the stability of towing systems by changing the configuration of the towing robot.