期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Synthesis and characterization of phosphate-modified LiMn_2O_4 cathode materials for Li-ion battery 被引量:7
1
作者 Qing Lai Jiang Ke Du Yan Bing Cao Zhong Dong Peng Guo Rong Hu Ye Xiang Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第11期1382-1386,共5页
LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(... LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate. 展开更多
关键词 Li-ion battery cathode materials Spinel limn2o4 PHoSPHATE Polyol synthesis method
在线阅读 下载PDF
Effects of sodium substitution on properties of LiMn_2O_4 cathode for lithium ion batteries 被引量:5
2
作者 郭华军 李向群 +3 位作者 何方勇 李新海 王志兴 彭文杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1043-1048,共6页
Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge... Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge measurements. The results show that all the samples exhibit the same cubic spinel phase structure without impurity.The lattice constant and unit cell volume decrease with increasing the sodium dopant amount.As the molar ratio of sodium to manganese(x=n(Na)/n(Mn))increases from 0 to 0.03,the initial discharge capacity of the Li1.05Mn2O4 cathodes decreases from 119.2 to 107.9 mA·h/g,and the discharge capability at large current rate and the storage performance decline dramatically,while cycling performance at room temperature and 55℃are improved.The CV and EIS studies indicate that reversibility of Li1.05Mn2O4 cathodes decreases and the electrochemical impedance increases with increasing the sodium dopant amount. 展开更多
关键词 lithium ion battery cathode limn2o4 SoDIUM SUBSTITUTIoN
在线阅读 下载PDF
Characteristics of LiCoO2, LiMn2O4 and LiNi0.45Co0.1Mn0.45O2 as cathodes of lithium ion batteries 被引量:5
3
作者 GUO Hua-jun LI Xin-hai ZHANG Xin-ming ZENG Su-ming WANG Zhi-xing PENG Wen-jie 《Journal of Central South University of Technology》 2005年第z1期44-49,共6页
LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were ... LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.4s Co0.10 Mn0. 45 O2 has a layered structure with hexagonal lattice. The commercial LicoO2 has sphere-like appearance and smooth surfaces, while the LiMn2 O4 and LiNi0.45 Co0. 10 Mn0. 45 O2 consist of cornered and uneven particles. LiNi0. 45 Co0.10 Mn0. 45 O2 has a large disLiMn2 O4 and LiCoO2, respectively. LiCoO2 and LiMn2 O4 have higher discharge voltage and better rate-capability than LiNi0. 45Co0.10 Mn0. 45 O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3 % at the 250th cycle. Batteries with LiMn2 O4 or LiNi0.45 Co0.10 Mn0. 45 O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes. 展开更多
关键词 lithium ion batteries cathode LICoo2 limn2o4 LiNi0. 45 Co0. 10 Mn0. 45 o2
在线阅读 下载PDF
Copolymerization-Assisted Preparation of Porous LiMn_2O_4 Hollow Microspheres as High Power Cathode of Lithium-ion Batteries 被引量:2
4
作者 Zhimin Zou Zhaojin Li +2 位作者 Hui Zhang Xiaohui Wang Chunhai Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第8期781-787,共7页
Porous LiMn2O4 hollow microspheres were facilely prepared by incorporation of Li and Mn elements into a spherical polymeric precursor through copolymerization of lithium and manganese acetates with resorcinol and hexa... Porous LiMn2O4 hollow microspheres were facilely prepared by incorporation of Li and Mn elements into a spherical polymeric precursor through copolymerization of lithium and manganese acetates with resorcinol and hexamethylenetetramine and then burning off the organic matrix at appropriate temperatures in air. The LiMn2O4 inherited the spherical morphology of the polymeric precursor but showed hollow porous structure assembled by nanocrystals of about 50–100 nm in size. When tested as cathode of Li-ion batteries, the LiMn2O4 hollow spheres exhibited excellent rate capability and cycle stability.A discharge capacity of above 90 mAh g-1was maintained at 10 C(1C = 120 mAg-1), and the cells can still deliver a discharge capacity over 100 mAhg-1after another 115 cycles at 0.5 C. With such excellent electrochemical properties, the prepared LiMn2O4 hollow microspheres could be promising cathode of Li-ion batteries for long term and high power applications. 展开更多
关键词 Li-ion batteries cathode limn2o4 Hollow spheres Rate capability
原文传递
Electrochemical performance of Li-rich cathode material,0.3Li_2MnO_3-0.7LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2 microspheres with F-doping 被引量:14
5
作者 Ting Liu Shi-Xi Zhao +2 位作者 Lu-Lu Gou Xia Wu Ce-Wen Nan 《Rare Metals》 SCIE EI CAS CSCD 2019年第3期189-198,共10页
Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation me... Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances. 展开更多
关键词 LITHIUM-IoN battery cathode materials 0.3Li2Mno3-0.7limn1/3Ni1/3Co1/3o2-xFx F-doped
原文传递
Synthesis and Characterization of LiCo_xMn_(2-x)O_4 Cathode Materials 被引量:1
6
作者 姚耀春 Takayuki Watanabe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期307-310,共4页
LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition... LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition and electrochemical performance were characterized with XRD, SEM, ICP-AES and charge-discharge test. The experimental results show that all samples have a single spinel structure, well formed crystal shape and uniformly particle size distribution. The lattice parameters of LiCo Mn2-xO4 decrease and the average oxidation states of manganese ions increase with an increase in Co content. Compared with pure LiMn2O4, the LiCo Mn2xO4 (x=0.03-0.12) samples show a lower special capacity, but their cycling life are improved. The capacity loss of LiCo009Mn191O4 and LiCo0.1Mn1.88O4 is only 1.85% and 0.95%, respectively, after the 20th cycle. The improvement of the cycle performance is attributed to the substitution of Co at the Mn sites in the spinel structure, which suppresses the Jahn-Teller distortion and improves the structural stability. 展开更多
关键词 lithium ion batteries cathode materials spinel limn2o4 mechanical activation-solid state method Co-DoPING
在线阅读 下载PDF
Nanoarchitectured LiMn_2O_4/Graphene/ZnO Composites as Electrodes for Lithium Ion Batteries 被引量:2
7
作者 Saad Aziz Jianqing Zhao +1 位作者 Carrington Cain Ying Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第5期427-433,共7页
LiMn2O4 nanoparticles are facilely synthesized using a sol-gel processing method. Graphene is added to LiMn2O4 electrode aiming at increasing specific capacity and improving rate capability. In order to further improv... LiMn2O4 nanoparticles are facilely synthesized using a sol-gel processing method. Graphene is added to LiMn2O4 electrode aiming at increasing specific capacity and improving rate capability. In order to further improve cycling stability of LiMn2O4/graphene electrode, atomic layer deposition (ALD) is used to deposit ultrathin ZnO coating composed of six ZnO ALD layers and modify the surface of either LiMn2O4/graphene electrode or individual LiMn2O4 particles to form nanoarchitectured LiMn2O4/graphene/ZnO electrodes. Both ZnO-ALD-modified LiMn2O4/graphene electrodes demonstrate enhanced cycling performance at 1C, retaining the final discharge capacity above 122 mA h g 1 after 100 electrochemical cycles, which is higher than 115 mA h g-1 of pristine LiMn2O4/graphene electrode and 109 mA h g-1 of bare LiMn2O4 electrode. The improved electrochemical performance of nanoarchitectured LiMn2O4/graphene/ZnO electrodes can be attributed to the cooperative effects from high electronic conductivity of graphene sheets to facilitate electron transportation and effective protection of ZnO ALD coating to restrict Mn dissolution and electrolyte decomposition. 展开更多
关键词 limn2o4/graphene nanocomposite Atomic layer deposition cathode material Lithium ion battery
原文传递
Influence on performance and structure of spinel LiMn2O4 for lithium-ion batteries by doping rare-earth Sm 被引量:2
8
作者 PENG Zhong-dong HU Guo-rong LIU Ye-xiang 《Journal of Central South University of Technology》 2005年第z1期28-32,共5页
The spinel LiMn2O4 used as cathode materials for lithium-ion batteries was synthesized by mechanochemistry fluid activation process, and modified by doping rare-earth Sm. Testing of X-ray diffraction, cyclic voltammog... The spinel LiMn2O4 used as cathode materials for lithium-ion batteries was synthesized by mechanochemistry fluid activation process, and modified by doping rare-earth Sm. Testing of X-ray diffraction, cyclic voltammograms, charge-discharge and SEM was carried out for LiMn2O4 cathode materials and the modified materials.The results show that the cathode materials doped rare earth LixMn2-ySmxO4 (0.95≤x≤1.2, 0≤y≤0.3, 0≤z≤0.2) exhibit standard spinel structure, high reversibility of electrochemistry and excellent properties of charge-discapacity is deteriorated less than 15% after 300 cycles at room temperature and less than 20% after 200 cycles at 55 C.At the same time, Crystal Field Theory was applied to explain the function and mechanism of doped rare earth element. 展开更多
关键词 LITHIUM-IoN batteries SM cathode material RARE-EARTH limn2o4
在线阅读 下载PDF
Effect of electrolytic MnO_2 pretreatment on performance of as-prepared LiMn_2O_4 被引量:1
9
作者 赵于前 蒋庆来 +2 位作者 王伟刚 杜柯 胡国荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1146-1150,共5页
To investigate the effect of electrolytic MnO2 (EMD) on the performance of LiMn2O4, several pretreatment methods, such as acid treating, presintering and impregnating with chromic salt, were used. The pretreated EMD... To investigate the effect of electrolytic MnO2 (EMD) on the performance of LiMn2O4, several pretreatment methods, such as acid treating, presintering and impregnating with chromic salt, were used. The pretreated EMD and prepared LiMn2O4 were characterized by X-ray diffraction and inductively coupled plasma emission spectrometry. Charge and discharge tests of Li/LiMn2O4 batteries were also employed to evaluate electrochemical performance. The experimental results show that inorganic impurity contents in EMD decrease remarkably after acid treating; presintering EMD can remove adsorbent water and organic impurity, enlarge pore space and increase active reaction sites; pre-doping chromium in EMD can form more homogenous compound substance LiCr0.05Mn1.95O4, which shows better structural stability and capacity retention. 展开更多
关键词 lithium-ion batteries cathode material limn2o4 MNo2
在线阅读 下载PDF
Li-MnO_2电池新型正极材料——λ-MnO_2的合成与电化学性能研究
10
作者 胡涛 王先友 +2 位作者 曹俊琪 戴春岭 李秀琴 《电源技术》 CAS CSCD 北大核心 2009年第12期1057-1060,共4页
采用酸处理尖晶石型LiMn2O4的方法合成了λ-MnO2。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)和恒流放电测试等对λ-MnO2的结构、形貌和电化学性能进行了研究。结果表明,合成的λ-MnO2具有类似于LiMn2O4的尖晶石型晶体结构,形貌规则,晶... 采用酸处理尖晶石型LiMn2O4的方法合成了λ-MnO2。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)和恒流放电测试等对λ-MnO2的结构、形貌和电化学性能进行了研究。结果表明,合成的λ-MnO2具有类似于LiMn2O4的尖晶石型晶体结构,形貌规则,晶粒细小,粒径分布均匀;将其作为正极材料组装成Li-MnO2电池,以0.025C倍率放电,得到了3.98V和2.88V两个放电平台,放电比容量达268mAh/g,且其放电平台和比容量受放电倍率影响较小。 展开更多
关键词 λ-mno2 li-mno2电池 limn2o4 正极材料
在线阅读 下载PDF
Electrochemical properties of spinel LiMn_2O_4 and LiAl_(0.1)Mn_(1.9)O_(3.9)F_(0.1) synthesized by solid-state reaction 被引量:6
11
作者 Tao Li Weihua Qiu +1 位作者 Hailei Zhao Jingjing Liu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第2期187-191,共5页
Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with ... Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples. 展开更多
关键词 lithium-ion batteries positive materials limn2o4 solid-state reaction electrochemical properties DoPING
在线阅读 下载PDF
Electrochemical Performance of Surface-Modified LiMn_2O_4 Prepared by a Melting Impregnation Method 被引量:3
12
作者 Jian TU Xinbing ZHAO Gaoshao CAO Tiejun ZHU Dagao ZHUANG diangping TU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第4期433-436,共4页
The surface of as-prepared LiMn2O4 was modified with ZnO, Al2O3, CoO and LiCoO2 using a simple nitrate melting impregnation method. Transmission electron microscopy (TEM) studies indicated that oxide nano- particles... The surface of as-prepared LiMn2O4 was modified with ZnO, Al2O3, CoO and LiCoO2 using a simple nitrate melting impregnation method. Transmission electron microscopy (TEM) studies indicated that oxide nano- particles in the range of 10~50 nm are coated on the surface of the spinel. The surface modified samples show better capacity retention than the unmodified LiMn2O4 spinel at both room temperature and 55℃. Among these samples, the ZnO-modified LiMn2O4 shows the best combination of a high capacity and a low capacity fading rate of 0.036% per cycle at room temperature and 0.064% per cycle at 55℃. The improvement for surface modified LiMn2O4 can be attributed to the inhibition of Mn dissolution and O losses on the surface. 展开更多
关键词 limn2o4 spinel Surface modification Melting impregnation cathode materials Lithium-ion batteries
在线阅读 下载PDF
不同Mn源对Li_(1+x)Mn_(2-x)O_4尖晶石正极材料的电化学性能的影响 被引量:5
13
作者 刘兴泉 陈召勇 +3 位作者 贺益 刘培松 李庆 于作龙 《合成化学》 CAS CSCD 2001年第3期218-222,共5页
以 Li2 CO3为 Mn源 ,采用醇水混合溶剂分散与中温固相反应法考察了 Mn(NO3) 2 · 6H2 O,Mn(Me CO2 ) 2· 4 H2 O,Mn CO3,化学 Mn O2 (CMD)和电解 Mn O2 (EMD)等不同 Mn前驱物对制备 Li1 + x Mn2 - x O4尖晶石正极材料的电化学... 以 Li2 CO3为 Mn源 ,采用醇水混合溶剂分散与中温固相反应法考察了 Mn(NO3) 2 · 6H2 O,Mn(Me CO2 ) 2· 4 H2 O,Mn CO3,化学 Mn O2 (CMD)和电解 Mn O2 (EMD)等不同 Mn前驱物对制备 Li1 + x Mn2 - x O4尖晶石正极材料的电化学性能的影响 ,并采用 XRD,BET,TEM等手段对材料进行了表征。结果表明 ,由不同 Mn前驱物制备的正极材料均呈尖晶石结构 ,其容量大小和循环性能 (依 Mn源为顺序 )为 EMD>Mn(NO3) 2 · 6H2 O>Mn CO3>Mn(Me CO2 ) 2 · 4 H2 O>CMD。材料呈立方晶体 ,比表面积 (依 Mn源为顺序 )为 CMD>Mn CO3>Mn(NO3) 2 · 6H2 O>Mn(Me CO2 ) 2 · 4 H2 O>EMD,正好与容量及稳定性顺序相反。采用本文的制备方法时 ,EMD和 Mn(NO3) 2 · 6H2 O都是较好的 Mn前驱物 ,Mn(Me CO2 ) 2 · 4 H2 O和 Mn CO3也可以做 Mn源 ,但焙烧时需要富氧气氛 ,CMD不适宜作 展开更多
关键词 锂里离子电池 正极材料 锰酸锂 制备 表征 尖晶石 电化学性能
在线阅读 下载PDF
LiM_xMn_(2-x)O_4(M=Cr、Al)尖晶石相阴极材料研究 被引量:4
14
作者 毕渭滨 高海春 +3 位作者 孙长敏 金增瑗 马杰 朱若华 《盐湖研究》 CSCD 2001年第3期38-42,共5页
用溶胶 -凝胶法制备了 L i Mx Mn2 - x O4( M=Cr、Al;x≤ 0 .2 )尖晶石相锂离子电池阴极材料。SEM表面观测显示材料的晶形好 ,粒度均匀 ,粒径小于 0 .5微米。电化学测试表明 ,低水平量 ( 0 .0 2≤ x≤ 0 .0 5 )的 Cr、Al掺杂材料初始容... 用溶胶 -凝胶法制备了 L i Mx Mn2 - x O4( M=Cr、Al;x≤ 0 .2 )尖晶石相锂离子电池阴极材料。SEM表面观测显示材料的晶形好 ,粒度均匀 ,粒径小于 0 .5微米。电化学测试表明 ,低水平量 ( 0 .0 2≤ x≤ 0 .0 5 )的 Cr、Al掺杂材料初始容量稍有降低 ,但却较大地改善了循环性能。在 L i Mx Mn2 - x O4中 ,掺 Al降低了 L i+、Mn3+占位的无序度 ;Cr3+和 Al3+取代了其中的部分 Mn3+ ,占据八面体位 ( 16 d) ,抑制了 Jahn-Teller效应 ,增强了尖晶石骨架的稳定性 ,提高了其电化学性能。在 3.0~ 4.3V的充放电过程中 ,材料中的 Cr、Al都保持 +3价不变 。 展开更多
关键词 尖晶石 LiMxMn2-xo4 阴极材料 锂离子电池 溶胶-凝胶法 掺杂材料 稳定性 锰酸锂
在线阅读 下载PDF
LiCr_xMn_(2-x)O_4的倍率放电特性 被引量:2
15
作者 李建刚 唐致远 +1 位作者 薛建军 刘春燕 《应用化学》 CAS CSCD 北大核心 2001年第10期802-805,共4页
研究了 Li Crx Mn2 -x O4的倍率充放电性能 ,用脉冲电流松弛法测定了 Li Crx Mn2 -x O4中 Li+的化学扩散系数 ,讨论了掺杂对其倍率放电性能影响的机理 .结果表明 ,适当增加掺杂量 ,可加快 Li+的化学扩散速度 ,抑制 Jahn-Tellar效应 ,改... 研究了 Li Crx Mn2 -x O4的倍率充放电性能 ,用脉冲电流松弛法测定了 Li Crx Mn2 -x O4中 Li+的化学扩散系数 ,讨论了掺杂对其倍率放电性能影响的机理 .结果表明 ,适当增加掺杂量 ,可加快 Li+的化学扩散速度 ,抑制 Jahn-Tellar效应 ,改善 Li Crx Mn2 -x O4高倍率充放电性能 .在 1 C倍率充放电时 Li Cr0 .1Mn1. 展开更多
关键词 LiCrxMn2-xo4 锂离子电池 正极材料 倍率放电 放电特性 化学扩散系数 锂铬锰氧化物 脉冲电流松弛法
在线阅读 下载PDF
Structure and Electrochemical Properties of LiMn_2O_(4-x)F_x
16
作者 夏君磊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第1期47-51,共5页
LiMn 2O 4-x F x prepared by the sol gel method has a perfect crystal formation .The crystal particle size of the material was medium and distributed uniformly. The substitution of F for O increased the specific... LiMn 2O 4-x F x prepared by the sol gel method has a perfect crystal formation .The crystal particle size of the material was medium and distributed uniformly. The substitution of F for O increased the specific capacity of the material at the cost of the cycleability .The explanation of this results is that the F decreases the valence of Mn,that is,more Mn 3+ and less Mn 4+ exist in the material.The increase of Mn 3+ will improve the initial specific capacity and Mn 3+ is the original reason for Jahn Teller effect that caused the poor cycleability of the cathode material by the micro distortion of the crystal structure. In addition, the expanded measurement of the crystal lattice is also the reason for the poor cycleability.Therefore,the results of F substitution and cation substitution are opposite.If the two methods are combined,they can compensate the inability each other and the satisfactory results may be obtained. 展开更多
关键词 Li ion battery cathode materials limn 2o 4-x F x.
在线阅读 下载PDF
Spinel LiMn_(2-x)Si_xO_4(x<1) through Si^(4+) substitution as a potential cathode material for lithium-ion batteries 被引量:4
17
作者 汪敏 杨猛 +3 位作者 赵相玉 马立群 沈晓冬 曹国忠 《Science China Materials》 SCIE EI CSCD 2016年第7期558-566,共9页
Spinel LiMn_(2-x)Si_xO_4(x< 1,through substituting Mn^(4+) with Si^(4+) in cubic spinel LiMn_2O_4) was synthesized successfully by a facile sol-gel method.The as-prepared LiMn_(2-x)Si_xO_4 consisted of pores with l... Spinel LiMn_(2-x)Si_xO_4(x< 1,through substituting Mn^(4+) with Si^(4+) in cubic spinel LiMn_2O_4) was synthesized successfully by a facile sol-gel method.The as-prepared LiMn_(2-x)Si_xO_4 consisted of pores with large size distribution range from a few nanometers to over 200 nm and possessed specific surface area of 8.76 m^2g^(-1).Results of X-ray powder diffraction and X-ray photoelectron spectroscopy confirmed that Si atoms entered the host lattice.As a cathode material for rechargeable lithium-ion batteries,spinel LiMn_(2-x)Si_xO_4exhibited excellent structural reversibility and integrity during the charging-discharging process.The result indicated that substitution of Mn^(4+) by Si^(4+) in spinel LiMn_2O_4material effectively alleviated the phase transition caused by Jahn-Teller effect.The initial discharge capacity of the as-prepared spinel LiMn_(2-x)Si_xO_4 was 147 mA h g^(-1) over the voltage range of 1.5-4.8 V.However,after 51 cycles,the specific capacity was 88 mA h g^(-1) with capacity retention of 60%.More work is needed to understand the effects of substituting Mn^(4+) by Si^(4+) and to improve the cyclic stability. 展开更多
关键词 limn2o4 Si4+ SUBSTITUTIoN cathode material lithium-ion batteriescathode material
原文传递
Structure and electrochemical properties of La, F dual-doped LiLa_(0.01)Mn_(1.99)O_(3.99)F_(0.01) cathode materials 被引量:3
18
作者 Meng Chen Shengjun Li Chuang Yang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第4期468-473,共6页
The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides.were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investiga... The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides.were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG) measurements, X-ray diffraction (XRD), scanning electronic microscope (SEM), cyclic voltammetry (CV), and charge-discharge test. XRD data shows that all the samples exhibit the same pure spinel phase, and the LiLa0.01Mn1.99O3.99F0.01 and LiLao.olMnl.9904 samples have smaller lattice parameters and unit cell volume than LiMn2O4. SEM indicates that LiLa0.01Mn1.99O3.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 129.9, 122.8, and 126.4 mAh·g^-1, and the capacity losses of the initial values after 50 cycles are 14.5%, 7.6%, and 8.0%, respectively The CVs show that the La and F dual-doped spinel displays a better reversibility than LiMn2O4. 展开更多
关键词 lithium ion battery cathode material limn2o4 STRUCTURE electrochemical properties
在线阅读 下载PDF
Preparation of LiFePO_4 for lithium ion battery using Fe_2P_2O_7 as precursor 被引量:1
19
作者 胡国荣 肖政伟 +2 位作者 彭忠东 杜柯 邓新荣 《Journal of Central South University of Technology》 2008年第4期531-534,共4页
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepare... In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively. 展开更多
关键词 lithium ion battery cathode material PREPARATIoN PRECURSoR LIFEPo4 Fe2P2o7
在线阅读 下载PDF
Preparation and electrochemical properties of LiMn_(1.95)M_(0.05)O_4(M=Cr,Ni) 被引量:5
20
作者 YU Zemin ZHAO Liancheng 《Rare Metals》 SCIE EI CAS CSCD 2007年第1期62-67,共6页
The preparation process and electrochemical properties of LiMn2O4 and LiMnl.95M0.05O4 (M = Cr, Ni) were studied. The results show that the decomposition temperature range of xerogel prepared with lithium acetate and... The preparation process and electrochemical properties of LiMn2O4 and LiMnl.95M0.05O4 (M = Cr, Ni) were studied. The results show that the decomposition temperature range of xerogel prepared with lithium acetate and manganese acetate as raw rnaterials is large and the decomposition speed is slow. Oxygen consumed is apt to get a prompt supplement during the preparation of LiMn2O4, and carbonization of the organic matter can be reduced or avoided, which is favorable to the combination of lithium and manganese. Using lithium acetate, manganese acetate, chromium nitrate, and nickel nitrate as raw materials and adopting the citric acid complexing method, it has been found that the prepared powders have high purity, high quality stability, and even doping characters. With the increase of sintering temperature, the particle size and crystal lattice constant of LiMn1.95M0.05O4 (M = Cr, Ni) enhance. However, the purity of the product is relatively high and has no obvious change, which is advantageous to the control of the quality of LiMn1.95M0.0504 (M = Cr, Ni). Doping with a small amount of Cr3. and Ni^2+ can stabilize the spinel structure of LiMn2O4, suppress the Jahn-Teller effect, and improve the cycling properties but reduce the initial capacity. 展开更多
关键词 lithium-ion battery cathode material limn2o4 cycling properties
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部