LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(...LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.展开更多
Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge...Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge measurements. The results show that all the samples exhibit the same cubic spinel phase structure without impurity.The lattice constant and unit cell volume decrease with increasing the sodium dopant amount.As the molar ratio of sodium to manganese(x=n(Na)/n(Mn))increases from 0 to 0.03,the initial discharge capacity of the Li1.05Mn2O4 cathodes decreases from 119.2 to 107.9 mA·h/g,and the discharge capability at large current rate and the storage performance decline dramatically,while cycling performance at room temperature and 55℃are improved.The CV and EIS studies indicate that reversibility of Li1.05Mn2O4 cathodes decreases and the electrochemical impedance increases with increasing the sodium dopant amount.展开更多
LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were ...LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.4s Co0.10 Mn0. 45 O2 has a layered structure with hexagonal lattice. The commercial LicoO2 has sphere-like appearance and smooth surfaces, while the LiMn2 O4 and LiNi0.45 Co0. 10 Mn0. 45 O2 consist of cornered and uneven particles. LiNi0. 45 Co0.10 Mn0. 45 O2 has a large disLiMn2 O4 and LiCoO2, respectively. LiCoO2 and LiMn2 O4 have higher discharge voltage and better rate-capability than LiNi0. 45Co0.10 Mn0. 45 O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3 % at the 250th cycle. Batteries with LiMn2 O4 or LiNi0.45 Co0.10 Mn0. 45 O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes.展开更多
Porous LiMn2O4 hollow microspheres were facilely prepared by incorporation of Li and Mn elements into a spherical polymeric precursor through copolymerization of lithium and manganese acetates with resorcinol and hexa...Porous LiMn2O4 hollow microspheres were facilely prepared by incorporation of Li and Mn elements into a spherical polymeric precursor through copolymerization of lithium and manganese acetates with resorcinol and hexamethylenetetramine and then burning off the organic matrix at appropriate temperatures in air. The LiMn2O4 inherited the spherical morphology of the polymeric precursor but showed hollow porous structure assembled by nanocrystals of about 50–100 nm in size. When tested as cathode of Li-ion batteries, the LiMn2O4 hollow spheres exhibited excellent rate capability and cycle stability.A discharge capacity of above 90 mAh g-1was maintained at 10 C(1C = 120 mAg-1), and the cells can still deliver a discharge capacity over 100 mAhg-1after another 115 cycles at 0.5 C. With such excellent electrochemical properties, the prepared LiMn2O4 hollow microspheres could be promising cathode of Li-ion batteries for long term and high power applications.展开更多
Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation me...Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.展开更多
LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition...LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition and electrochemical performance were characterized with XRD, SEM, ICP-AES and charge-discharge test. The experimental results show that all samples have a single spinel structure, well formed crystal shape and uniformly particle size distribution. The lattice parameters of LiCo Mn2-xO4 decrease and the average oxidation states of manganese ions increase with an increase in Co content. Compared with pure LiMn2O4, the LiCo Mn2xO4 (x=0.03-0.12) samples show a lower special capacity, but their cycling life are improved. The capacity loss of LiCo009Mn191O4 and LiCo0.1Mn1.88O4 is only 1.85% and 0.95%, respectively, after the 20th cycle. The improvement of the cycle performance is attributed to the substitution of Co at the Mn sites in the spinel structure, which suppresses the Jahn-Teller distortion and improves the structural stability.展开更多
LiMn2O4 nanoparticles are facilely synthesized using a sol-gel processing method. Graphene is added to LiMn2O4 electrode aiming at increasing specific capacity and improving rate capability. In order to further improv...LiMn2O4 nanoparticles are facilely synthesized using a sol-gel processing method. Graphene is added to LiMn2O4 electrode aiming at increasing specific capacity and improving rate capability. In order to further improve cycling stability of LiMn2O4/graphene electrode, atomic layer deposition (ALD) is used to deposit ultrathin ZnO coating composed of six ZnO ALD layers and modify the surface of either LiMn2O4/graphene electrode or individual LiMn2O4 particles to form nanoarchitectured LiMn2O4/graphene/ZnO electrodes. Both ZnO-ALD-modified LiMn2O4/graphene electrodes demonstrate enhanced cycling performance at 1C, retaining the final discharge capacity above 122 mA h g 1 after 100 electrochemical cycles, which is higher than 115 mA h g-1 of pristine LiMn2O4/graphene electrode and 109 mA h g-1 of bare LiMn2O4 electrode. The improved electrochemical performance of nanoarchitectured LiMn2O4/graphene/ZnO electrodes can be attributed to the cooperative effects from high electronic conductivity of graphene sheets to facilitate electron transportation and effective protection of ZnO ALD coating to restrict Mn dissolution and electrolyte decomposition.展开更多
The spinel LiMn2O4 used as cathode materials for lithium-ion batteries was synthesized by mechanochemistry fluid activation process, and modified by doping rare-earth Sm. Testing of X-ray diffraction, cyclic voltammog...The spinel LiMn2O4 used as cathode materials for lithium-ion batteries was synthesized by mechanochemistry fluid activation process, and modified by doping rare-earth Sm. Testing of X-ray diffraction, cyclic voltammograms, charge-discharge and SEM was carried out for LiMn2O4 cathode materials and the modified materials.The results show that the cathode materials doped rare earth LixMn2-ySmxO4 (0.95≤x≤1.2, 0≤y≤0.3, 0≤z≤0.2) exhibit standard spinel structure, high reversibility of electrochemistry and excellent properties of charge-discapacity is deteriorated less than 15% after 300 cycles at room temperature and less than 20% after 200 cycles at 55 C.At the same time, Crystal Field Theory was applied to explain the function and mechanism of doped rare earth element.展开更多
To investigate the effect of electrolytic MnO2 (EMD) on the performance of LiMn2O4, several pretreatment methods, such as acid treating, presintering and impregnating with chromic salt, were used. The pretreated EMD...To investigate the effect of electrolytic MnO2 (EMD) on the performance of LiMn2O4, several pretreatment methods, such as acid treating, presintering and impregnating with chromic salt, were used. The pretreated EMD and prepared LiMn2O4 were characterized by X-ray diffraction and inductively coupled plasma emission spectrometry. Charge and discharge tests of Li/LiMn2O4 batteries were also employed to evaluate electrochemical performance. The experimental results show that inorganic impurity contents in EMD decrease remarkably after acid treating; presintering EMD can remove adsorbent water and organic impurity, enlarge pore space and increase active reaction sites; pre-doping chromium in EMD can form more homogenous compound substance LiCr0.05Mn1.95O4, which shows better structural stability and capacity retention.展开更多
Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with ...Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.展开更多
The surface of as-prepared LiMn2O4 was modified with ZnO, Al2O3, CoO and LiCoO2 using a simple nitrate melting impregnation method. Transmission electron microscopy (TEM) studies indicated that oxide nano- particles...The surface of as-prepared LiMn2O4 was modified with ZnO, Al2O3, CoO and LiCoO2 using a simple nitrate melting impregnation method. Transmission electron microscopy (TEM) studies indicated that oxide nano- particles in the range of 10~50 nm are coated on the surface of the spinel. The surface modified samples show better capacity retention than the unmodified LiMn2O4 spinel at both room temperature and 55℃. Among these samples, the ZnO-modified LiMn2O4 shows the best combination of a high capacity and a low capacity fading rate of 0.036% per cycle at room temperature and 0.064% per cycle at 55℃. The improvement for surface modified LiMn2O4 can be attributed to the inhibition of Mn dissolution and O losses on the surface.展开更多
LiMn 2O 4-x F x prepared by the sol gel method has a perfect crystal formation .The crystal particle size of the material was medium and distributed uniformly. The substitution of F for O increased the specific...LiMn 2O 4-x F x prepared by the sol gel method has a perfect crystal formation .The crystal particle size of the material was medium and distributed uniformly. The substitution of F for O increased the specific capacity of the material at the cost of the cycleability .The explanation of this results is that the F decreases the valence of Mn,that is,more Mn 3+ and less Mn 4+ exist in the material.The increase of Mn 3+ will improve the initial specific capacity and Mn 3+ is the original reason for Jahn Teller effect that caused the poor cycleability of the cathode material by the micro distortion of the crystal structure. In addition, the expanded measurement of the crystal lattice is also the reason for the poor cycleability.Therefore,the results of F substitution and cation substitution are opposite.If the two methods are combined,they can compensate the inability each other and the satisfactory results may be obtained.展开更多
Spinel LiMn_(2-x)Si_xO_4(x< 1,through substituting Mn^(4+) with Si^(4+) in cubic spinel LiMn_2O_4) was synthesized successfully by a facile sol-gel method.The as-prepared LiMn_(2-x)Si_xO_4 consisted of pores with l...Spinel LiMn_(2-x)Si_xO_4(x< 1,through substituting Mn^(4+) with Si^(4+) in cubic spinel LiMn_2O_4) was synthesized successfully by a facile sol-gel method.The as-prepared LiMn_(2-x)Si_xO_4 consisted of pores with large size distribution range from a few nanometers to over 200 nm and possessed specific surface area of 8.76 m^2g^(-1).Results of X-ray powder diffraction and X-ray photoelectron spectroscopy confirmed that Si atoms entered the host lattice.As a cathode material for rechargeable lithium-ion batteries,spinel LiMn_(2-x)Si_xO_4exhibited excellent structural reversibility and integrity during the charging-discharging process.The result indicated that substitution of Mn^(4+) by Si^(4+) in spinel LiMn_2O_4material effectively alleviated the phase transition caused by Jahn-Teller effect.The initial discharge capacity of the as-prepared spinel LiMn_(2-x)Si_xO_4 was 147 mA h g^(-1) over the voltage range of 1.5-4.8 V.However,after 51 cycles,the specific capacity was 88 mA h g^(-1) with capacity retention of 60%.More work is needed to understand the effects of substituting Mn^(4+) by Si^(4+) and to improve the cyclic stability.展开更多
The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides.were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investiga...The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides.were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG) measurements, X-ray diffraction (XRD), scanning electronic microscope (SEM), cyclic voltammetry (CV), and charge-discharge test. XRD data shows that all the samples exhibit the same pure spinel phase, and the LiLa0.01Mn1.99O3.99F0.01 and LiLao.olMnl.9904 samples have smaller lattice parameters and unit cell volume than LiMn2O4. SEM indicates that LiLa0.01Mn1.99O3.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 129.9, 122.8, and 126.4 mAh·g^-1, and the capacity losses of the initial values after 50 cycles are 14.5%, 7.6%, and 8.0%, respectively The CVs show that the La and F dual-doped spinel displays a better reversibility than LiMn2O4.展开更多
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepare...In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.展开更多
The preparation process and electrochemical properties of LiMn2O4 and LiMnl.95M0.05O4 (M = Cr, Ni) were studied. The results show that the decomposition temperature range of xerogel prepared with lithium acetate and...The preparation process and electrochemical properties of LiMn2O4 and LiMnl.95M0.05O4 (M = Cr, Ni) were studied. The results show that the decomposition temperature range of xerogel prepared with lithium acetate and manganese acetate as raw rnaterials is large and the decomposition speed is slow. Oxygen consumed is apt to get a prompt supplement during the preparation of LiMn2O4, and carbonization of the organic matter can be reduced or avoided, which is favorable to the combination of lithium and manganese. Using lithium acetate, manganese acetate, chromium nitrate, and nickel nitrate as raw materials and adopting the citric acid complexing method, it has been found that the prepared powders have high purity, high quality stability, and even doping characters. With the increase of sintering temperature, the particle size and crystal lattice constant of LiMn1.95M0.05O4 (M = Cr, Ni) enhance. However, the purity of the product is relatively high and has no obvious change, which is advantageous to the control of the quality of LiMn1.95M0.0504 (M = Cr, Ni). Doping with a small amount of Cr3. and Ni^2+ can stabilize the spinel structure of LiMn2O4, suppress the Jahn-Teller effect, and improve the cycling properties but reduce the initial capacity.展开更多
基金financially supported by the National High-Tech Research and Development(863) Program of China(No.2006AA11A160)the National Natural Science Foundation of China(No.50604018)
文摘LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.
基金Project(2007CB613607) supported by the National Basic Research Program of ChinaProjects(2009FJ1002, 2009CK3062) supported by the Science and Technology Program of Hunan Province, China
文摘Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge measurements. The results show that all the samples exhibit the same cubic spinel phase structure without impurity.The lattice constant and unit cell volume decrease with increasing the sodium dopant amount.As the molar ratio of sodium to manganese(x=n(Na)/n(Mn))increases from 0 to 0.03,the initial discharge capacity of the Li1.05Mn2O4 cathodes decreases from 119.2 to 107.9 mA·h/g,and the discharge capability at large current rate and the storage performance decline dramatically,while cycling performance at room temperature and 55℃are improved.The CV and EIS studies indicate that reversibility of Li1.05Mn2O4 cathodes decreases and the electrochemical impedance increases with increasing the sodium dopant amount.
基金Project(50302016) supported by the National Natural Science Foundation of China Project(2005037698) supported by the Postdoctoral Science Foundation of China
文摘LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.4s Co0.10 Mn0. 45 O2 has a layered structure with hexagonal lattice. The commercial LicoO2 has sphere-like appearance and smooth surfaces, while the LiMn2 O4 and LiNi0.45 Co0. 10 Mn0. 45 O2 consist of cornered and uneven particles. LiNi0. 45 Co0.10 Mn0. 45 O2 has a large disLiMn2 O4 and LiCoO2, respectively. LiCoO2 and LiMn2 O4 have higher discharge voltage and better rate-capability than LiNi0. 45Co0.10 Mn0. 45 O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3 % at the 250th cycle. Batteries with LiMn2 O4 or LiNi0.45 Co0.10 Mn0. 45 O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes.
基金supported by Natural Science Foundation of Fujian Province (2016J01746 and 2016H0038)"Minjiang Scholarship" program (60815002)the start-up fund of XMUT (E2015027 and E2016005)
文摘Porous LiMn2O4 hollow microspheres were facilely prepared by incorporation of Li and Mn elements into a spherical polymeric precursor through copolymerization of lithium and manganese acetates with resorcinol and hexamethylenetetramine and then burning off the organic matrix at appropriate temperatures in air. The LiMn2O4 inherited the spherical morphology of the polymeric precursor but showed hollow porous structure assembled by nanocrystals of about 50–100 nm in size. When tested as cathode of Li-ion batteries, the LiMn2O4 hollow spheres exhibited excellent rate capability and cycle stability.A discharge capacity of above 90 mAh g-1was maintained at 10 C(1C = 120 mAg-1), and the cells can still deliver a discharge capacity over 100 mAhg-1after another 115 cycles at 0.5 C. With such excellent electrochemical properties, the prepared LiMn2O4 hollow microspheres could be promising cathode of Li-ion batteries for long term and high power applications.
基金financially supported by the National Natural Science Foundation of China (No. 51372136)the NSFC-Guangdong United Fund (No. U1401246)
文摘Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.
基金the Foundation of Key Laboratory of Yunnan Province(No.14051038)
文摘LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition and electrochemical performance were characterized with XRD, SEM, ICP-AES and charge-discharge test. The experimental results show that all samples have a single spinel structure, well formed crystal shape and uniformly particle size distribution. The lattice parameters of LiCo Mn2-xO4 decrease and the average oxidation states of manganese ions increase with an increase in Co content. Compared with pure LiMn2O4, the LiCo Mn2xO4 (x=0.03-0.12) samples show a lower special capacity, but their cycling life are improved. The capacity loss of LiCo009Mn191O4 and LiCo0.1Mn1.88O4 is only 1.85% and 0.95%, respectively, after the 20th cycle. The improvement of the cycle performance is attributed to the substitution of Co at the Mn sites in the spinel structure, which suppresses the Jahn-Teller distortion and improves the structural stability.
基金supported by the LABOR-RCS grant (LEQSF(2011-14)-RD-A-13)
文摘LiMn2O4 nanoparticles are facilely synthesized using a sol-gel processing method. Graphene is added to LiMn2O4 electrode aiming at increasing specific capacity and improving rate capability. In order to further improve cycling stability of LiMn2O4/graphene electrode, atomic layer deposition (ALD) is used to deposit ultrathin ZnO coating composed of six ZnO ALD layers and modify the surface of either LiMn2O4/graphene electrode or individual LiMn2O4 particles to form nanoarchitectured LiMn2O4/graphene/ZnO electrodes. Both ZnO-ALD-modified LiMn2O4/graphene electrodes demonstrate enhanced cycling performance at 1C, retaining the final discharge capacity above 122 mA h g 1 after 100 electrochemical cycles, which is higher than 115 mA h g-1 of pristine LiMn2O4/graphene electrode and 109 mA h g-1 of bare LiMn2O4 electrode. The improved electrochemical performance of nanoarchitectured LiMn2O4/graphene/ZnO electrodes can be attributed to the cooperative effects from high electronic conductivity of graphene sheets to facilitate electron transportation and effective protection of ZnO ALD coating to restrict Mn dissolution and electrolyte decomposition.
基金Project (02JJY2081) supported by the Natural Science Foundation of Hunan Province
文摘The spinel LiMn2O4 used as cathode materials for lithium-ion batteries was synthesized by mechanochemistry fluid activation process, and modified by doping rare-earth Sm. Testing of X-ray diffraction, cyclic voltammograms, charge-discharge and SEM was carried out for LiMn2O4 cathode materials and the modified materials.The results show that the cathode materials doped rare earth LixMn2-ySmxO4 (0.95≤x≤1.2, 0≤y≤0.3, 0≤z≤0.2) exhibit standard spinel structure, high reversibility of electrochemistry and excellent properties of charge-discapacity is deteriorated less than 15% after 300 cycles at room temperature and less than 20% after 200 cycles at 55 C.At the same time, Crystal Field Theory was applied to explain the function and mechanism of doped rare earth element.
基金Project (61172184) supported by the National Natural Science Foundation of ChinaProject (2007BAE12B01) supported by the National Key Technology R&D Program of China
文摘To investigate the effect of electrolytic MnO2 (EMD) on the performance of LiMn2O4, several pretreatment methods, such as acid treating, presintering and impregnating with chromic salt, were used. The pretreated EMD and prepared LiMn2O4 were characterized by X-ray diffraction and inductively coupled plasma emission spectrometry. Charge and discharge tests of Li/LiMn2O4 batteries were also employed to evaluate electrochemical performance. The experimental results show that inorganic impurity contents in EMD decrease remarkably after acid treating; presintering EMD can remove adsorbent water and organic impurity, enlarge pore space and increase active reaction sites; pre-doping chromium in EMD can form more homogenous compound substance LiCr0.05Mn1.95O4, which shows better structural stability and capacity retention.
基金This work was financially supported by the National Natural Science Foundation of China (No.50272012).
文摘Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.
文摘The surface of as-prepared LiMn2O4 was modified with ZnO, Al2O3, CoO and LiCoO2 using a simple nitrate melting impregnation method. Transmission electron microscopy (TEM) studies indicated that oxide nano- particles in the range of 10~50 nm are coated on the surface of the spinel. The surface modified samples show better capacity retention than the unmodified LiMn2O4 spinel at both room temperature and 55℃. Among these samples, the ZnO-modified LiMn2O4 shows the best combination of a high capacity and a low capacity fading rate of 0.036% per cycle at room temperature and 0.064% per cycle at 55℃. The improvement for surface modified LiMn2O4 can be attributed to the inhibition of Mn dissolution and O losses on the surface.
文摘LiMn 2O 4-x F x prepared by the sol gel method has a perfect crystal formation .The crystal particle size of the material was medium and distributed uniformly. The substitution of F for O increased the specific capacity of the material at the cost of the cycleability .The explanation of this results is that the F decreases the valence of Mn,that is,more Mn 3+ and less Mn 4+ exist in the material.The increase of Mn 3+ will improve the initial specific capacity and Mn 3+ is the original reason for Jahn Teller effect that caused the poor cycleability of the cathode material by the micro distortion of the crystal structure. In addition, the expanded measurement of the crystal lattice is also the reason for the poor cycleability.Therefore,the results of F substitution and cation substitution are opposite.If the two methods are combined,they can compensate the inability each other and the satisfactory results may be obtained.
基金supported by China Postdoctoral Science Foundation(2012M521064)the Natural Science Foundation of Jiangsu Province(BK20140936)+1 种基金Research and Innovation Project of Jiangsu Province(KLYX_0746)the Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD)
文摘Spinel LiMn_(2-x)Si_xO_4(x< 1,through substituting Mn^(4+) with Si^(4+) in cubic spinel LiMn_2O_4) was synthesized successfully by a facile sol-gel method.The as-prepared LiMn_(2-x)Si_xO_4 consisted of pores with large size distribution range from a few nanometers to over 200 nm and possessed specific surface area of 8.76 m^2g^(-1).Results of X-ray powder diffraction and X-ray photoelectron spectroscopy confirmed that Si atoms entered the host lattice.As a cathode material for rechargeable lithium-ion batteries,spinel LiMn_(2-x)Si_xO_4exhibited excellent structural reversibility and integrity during the charging-discharging process.The result indicated that substitution of Mn^(4+) by Si^(4+) in spinel LiMn_2O_4material effectively alleviated the phase transition caused by Jahn-Teller effect.The initial discharge capacity of the as-prepared spinel LiMn_(2-x)Si_xO_4 was 147 mA h g^(-1) over the voltage range of 1.5-4.8 V.However,after 51 cycles,the specific capacity was 88 mA h g^(-1) with capacity retention of 60%.More work is needed to understand the effects of substituting Mn^(4+) by Si^(4+) and to improve the cyclic stability.
文摘The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides.were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG) measurements, X-ray diffraction (XRD), scanning electronic microscope (SEM), cyclic voltammetry (CV), and charge-discharge test. XRD data shows that all the samples exhibit the same pure spinel phase, and the LiLa0.01Mn1.99O3.99F0.01 and LiLao.olMnl.9904 samples have smaller lattice parameters and unit cell volume than LiMn2O4. SEM indicates that LiLa0.01Mn1.99O3.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 129.9, 122.8, and 126.4 mAh·g^-1, and the capacity losses of the initial values after 50 cycles are 14.5%, 7.6%, and 8.0%, respectively The CVs show that the La and F dual-doped spinel displays a better reversibility than LiMn2O4.
基金Project(50604018)supported by the National Natural Science Foundation of China
文摘In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.
文摘The preparation process and electrochemical properties of LiMn2O4 and LiMnl.95M0.05O4 (M = Cr, Ni) were studied. The results show that the decomposition temperature range of xerogel prepared with lithium acetate and manganese acetate as raw rnaterials is large and the decomposition speed is slow. Oxygen consumed is apt to get a prompt supplement during the preparation of LiMn2O4, and carbonization of the organic matter can be reduced or avoided, which is favorable to the combination of lithium and manganese. Using lithium acetate, manganese acetate, chromium nitrate, and nickel nitrate as raw materials and adopting the citric acid complexing method, it has been found that the prepared powders have high purity, high quality stability, and even doping characters. With the increase of sintering temperature, the particle size and crystal lattice constant of LiMn1.95M0.05O4 (M = Cr, Ni) enhance. However, the purity of the product is relatively high and has no obvious change, which is advantageous to the control of the quality of LiMn1.95M0.0504 (M = Cr, Ni). Doping with a small amount of Cr3. and Ni^2+ can stabilize the spinel structure of LiMn2O4, suppress the Jahn-Teller effect, and improve the cycling properties but reduce the initial capacity.