This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator ...This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis.展开更多
In present paper, using some methods of approximation theory, the trace formulas for eigenvalues of a eigenvalue problem are calculated under the periodic condition and the decaying condition at x∞.
This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy in...This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc...展开更多
In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barr...This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.展开更多
Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are ea...Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.展开更多
Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated ...In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.展开更多
Gyroscopic dynamic system can be introduced to Hamiltonian system. Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system, an adjoint symplectic subspace iteration method of indefini...Gyroscopic dynamic system can be introduced to Hamiltonian system. Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system, an adjoint symplectic subspace iteration method of indefinite Hamiltonian function gyroscopic system was proposed to solve the eigenvalue problem of indefinite Hamiltonian function gyroscopic system. The character that the eigenvalues of Hamiltonian gyroscopic system are only pure imaginary or zero was used. The eigenvalues that Hamiltonian function is negative can be separated so that the eigenvalue problem of positive definite Hamiltonian function system was presented, and an adjoint symplectic subspace iteration method of positive definite Hamiltonian function system was used to solve the separated eigenvalue problem. Therefore, the eigenvalue problem of indefinite Hamiltonian function gyroscopic system was solved, and two numerical examples were given to demonstrate that the eigensolutions converge exactly.展开更多
In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is al...In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.展开更多
In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the ...In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the least residual problem of the above generalized inverse eigenvalue problem is studied by using the canonical correlation decomposition(CCD).The solutions to these problems are derived.Some numerical examples are given to illustrate the main results.展开更多
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh si...A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h -- O(H2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.展开更多
In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem o...In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.展开更多
Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute th...Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute the elements of the matrix is derived for a given list ∧ and dependency parameters. Explicit computations are performed for n≤5 and r≤4 to illustrate the result.展开更多
The eigenvalue problem of a class of fourth-order Hamiltonian operators is studied. We first obtain the geometric multiplicity, the algebraic index and the algebraic multiplicity of each eigenvalue of the Hamiltonian ...The eigenvalue problem of a class of fourth-order Hamiltonian operators is studied. We first obtain the geometric multiplicity, the algebraic index and the algebraic multiplicity of each eigenvalue of the Hamiltonian operators. Then, some necessary and sufficient conditions for the completeness of the eigen or root vector system of the Hamiltonian operators are given, which is characterized by that of the vector system consisting of the first components of all eigenvectors. Moreover, the results are applied to the plate bending problem.展开更多
In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The co...In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.展开更多
This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs...This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given, and a numerical example is provided.展开更多
Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized...Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized Fourier coefficients,respectively.In this paper,we investigate the correlations of triple sums associated to these Fourier coefficientsλ_(f)(n),λ_(g)(n),λ_(h)(n)over certain polynomials,and obtain some power-saving asymptotic estimates which beat the trivial bounds.展开更多
Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenv...Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenvalue problems,solvability,sufficient conditions.展开更多
In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywher...In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos.1236108412001130)。
文摘This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis.
文摘In present paper, using some methods of approximation theory, the trace formulas for eigenvalues of a eigenvalue problem are calculated under the periodic condition and the decaying condition at x∞.
文摘This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc...
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
基金This research was supported by the National Natural Science Foundation of Chinathe Scientific Research Foundation of the Ministry of Education of China (02JA790014)+1 种基金the Natural Science Foundation of Fujian Province Education Department(JB00078)the Developmental Foundation of Science and Technology of Fuzhou University (2004-XQ-16)
文摘This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.
基金partially supported by the National Natural Science Foundation of China(No.11971020)Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund)。
文摘Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.
文摘In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.
基金Project supported by the National Natural Science Foundation of China(No.10372019)the Doctoral Fund of Ministry of Education of China(No.20010141024)
文摘Gyroscopic dynamic system can be introduced to Hamiltonian system. Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system, an adjoint symplectic subspace iteration method of indefinite Hamiltonian function gyroscopic system was proposed to solve the eigenvalue problem of indefinite Hamiltonian function gyroscopic system. The character that the eigenvalues of Hamiltonian gyroscopic system are only pure imaginary or zero was used. The eigenvalues that Hamiltonian function is negative can be separated so that the eigenvalue problem of positive definite Hamiltonian function system was presented, and an adjoint symplectic subspace iteration method of positive definite Hamiltonian function system was used to solve the separated eigenvalue problem. Therefore, the eigenvalue problem of indefinite Hamiltonian function gyroscopic system was solved, and two numerical examples were given to demonstrate that the eigensolutions converge exactly.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.
基金Supported by the Key Discipline Construction Project of Tianshui Normal University
文摘In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the least residual problem of the above generalized inverse eigenvalue problem is studied by using the canonical correlation decomposition(CCD).The solutions to these problems are derived.Some numerical examples are given to illustrate the main results.
基金Project supported by the National Natural Science Foundation of China(Nos.10901131,10971166, and 10961024)the National High Technology Research and Development Program of China (No.2009AA01A135)the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2010211B04)
文摘A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h -- O(H2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.
基金The NSF (10601019 and J0630104) of ChinaChinese Postdoctoral Science Foundation and 985 Program of Jilin University.
文摘In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.
文摘Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute the elements of the matrix is derived for a given list ∧ and dependency parameters. Explicit computations are performed for n≤5 and r≤4 to illustrate the result.
基金Supported by the National Natural Science Foundation of China (11261034,11061019)the Chunhui Program of Ministry of Education of China (Z2009-1-01010)the Inner Mongolia Natural Science Foundation of China (2010MS0110)
文摘The eigenvalue problem of a class of fourth-order Hamiltonian operators is studied. We first obtain the geometric multiplicity, the algebraic index and the algebraic multiplicity of each eigenvalue of the Hamiltonian operators. Then, some necessary and sufficient conditions for the completeness of the eigen or root vector system of the Hamiltonian operators are given, which is characterized by that of the vector system consisting of the first components of all eigenvectors. Moreover, the results are applied to the plate bending problem.
基金supported by the National Key R&D Program of China(2018YFB1501001)the NSF of China(11771348)China Postdoctoral Science Foundation(2019M653579)。
文摘In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.
文摘This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given, and a numerical example is provided.
基金Supported in part by NSFC(Nos.12401011,12201214)National Key Research and Development Program of China(No.2021YFA1000700)+3 种基金Shaanxi Fundamental Science Research Project for Mathematics and Physics(No.23JSQ053)Science and Technology Program for Youth New Star of Shaanxi Province(No.2025ZC-KJXX-29)Natural Science Basic Research Program of Shaanxi Province(No.2025JC-YBQN-091)Scientific Research Foundation for Young Talents of WNU(No.2024XJ-QNRC-01)。
文摘Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized Fourier coefficients,respectively.In this paper,we investigate the correlations of triple sums associated to these Fourier coefficientsλ_(f)(n),λ_(g)(n),λ_(h)(n)over certain polynomials,and obtain some power-saving asymptotic estimates which beat the trivial bounds.
文摘Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenvalue problems,solvability,sufficient conditions.
文摘In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.