In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical a...In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical approaches exist,engineers increasingly prioritize computationally efficient,precise low-order models for practical implementation.In order to address this need,this study develops an innovative nonlinear dynamic formulation for pipelines accounting for both foundation and boundary nonlinearities.The proposed solution methodology initiates with global mode extraction using the global mode technique,followed by a detailed implementation procedure.Model validation is conducted through a cantilever pipeline case study featuring nonlinear support conditions,where strong agreement between the proposed model's predictions and finiteelement benchmark solutions demonstrates its reliability.Subsequently,a comprehensive parametric study investigates the combined effects of foundation stiffness,boundary constraints,excitation intensity,and nonlinear interaction terms on the vibrational response of the cantilever pipe.This systematic approach yields critical insights for practical engineering designs and applications.展开更多
In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are reg...In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization.展开更多
By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential pr...By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it.Global and local superlinear/quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.展开更多
For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for s...For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.展开更多
A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrain...A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrainfollowing grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future.展开更多
A new SQP type feasible method for inequality constrained optimization is presented,it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations.The directions of the m...A new SQP type feasible method for inequality constrained optimization is presented,it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations.The directions of the master algorithm are generated by only one quadratic programming, and its step\|size is always one, the directions of the auxiliary algorithm are new “second\|order” feasible descent. Under suitable assumptions,the algorithm is proved to possess global and strong convergence, superlinear and quadratic convergence.展开更多
The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear...The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear deformation theory, only considering the shearing deformation of the viscoelastic layer, the integrated first order differential matrix equation of a passive constrained layer damping rotational shell is established by combining with the normal equilibrium equation of the viscoelastic layer.A highly precise transfer matrix method is developed by extended homogeneous capacity precision integration technology.The numerical results show that present method is accurate and effective.展开更多
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi...Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.展开更多
Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The adva...Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.展开更多
This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-eliminat...This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.展开更多
By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential ...By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it. Global and local superlinear/ quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence...In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.展开更多
The constrained global optimization problem being considered, a modified integral_level set method was illustrated based on Chew_Zheng's paper on Integral Global Optimization and (Wu's) paper on Implementable ...The constrained global optimization problem being considered, a modified integral_level set method was illustrated based on Chew_Zheng's paper on Integral Global Optimization and (Wu's) paper on Implementable Algorithm Convergence of Modified Integral_Level Set Method for Global Optimization Problem. It has two characters: 1) Each phase must construct a new function which has the same global optimal value as that of primitive objective function; 2) Comparing it with (Zheng's) method, solving level set procedure is avoided. An implementable algorithm also is given and it is proved that this algorithm is convergent.展开更多
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien...In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.展开更多
The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical ...The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.展开更多
Generally, the procedure for Solving Security constrained unit commitment (SCUC) problems within Lagrangian Relaxation framework is partitioned into two stages: one is to obtain feasible SCUC states;the other is to so...Generally, the procedure for Solving Security constrained unit commitment (SCUC) problems within Lagrangian Relaxation framework is partitioned into two stages: one is to obtain feasible SCUC states;the other is to solve the economic dispatch of generation power among all the generating units. The core of the two stages is how to determine the feasibility of SCUC states. The existence of ramp rate constraints and security constraints increases the difficulty of obtaining an analytical necessary and sufficient condition for determining the quasi-feasibility of SCUC states at each scheduling time. However, a numerical necessary and sufficient numerical condition is proposed and proven rigorously based on Benders Decomposition Theorem. Testing numerical example shows the effectiveness and efficiency of the condition.展开更多
Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an...Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an antenna array composed of 9 antennas is applied to the detection. The double constrained robust capon beamforming (DCRCB) algorithm is used for reconstructing the breast image due to its better stability and high signal-to-interference-plus-noise ratio (SINR). The successful detection of a tumor of 2 mm in diameter shown in the reconstruction demonstrates the robustness of the DCRCB beamforming algorithm. This study verifies the feasibility of detecting small breast tumors by using the DCRCB imaging algorithm.展开更多
The damped least squares inversion principle is applied to the transient electromagnetic one-dimensional inversion of electrical sources,and a new model is obtained by continuously iterating the initial model,thereby ...The damped least squares inversion principle is applied to the transient electromagnetic one-dimensional inversion of electrical sources,and a new model is obtained by continuously iterating the initial model,thereby fitting the observed transient electromagnetic response,and performing one-dimensional inversion through induced electromotive force play.In this paper,in the damped least squares inversion,constraints are added to the Jacobian matrix,and simultaneous constraint equations and conventional inversion equations are solved.By weighting the constraint parameters,the difference between adjacent resistivities and layer thicknesses is minimized.Finally,K-type and H-type theoretical models were used to verify the reliability of the algorithm,and compared with the conventional transient electromagnetic damping least squares inversion.展开更多
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金supported by the National Natural Science Foundation of China(Nos.52401342 and 12572025)the Fundamental Research Funds for the Central Universities of China(Nos.D5000240076 and G2025KY05171)+1 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2025JCYBMS-026)the Basic Research Programs of Taicang(No.TC2024JC36)。
文摘In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical approaches exist,engineers increasingly prioritize computationally efficient,precise low-order models for practical implementation.In order to address this need,this study develops an innovative nonlinear dynamic formulation for pipelines accounting for both foundation and boundary nonlinearities.The proposed solution methodology initiates with global mode extraction using the global mode technique,followed by a detailed implementation procedure.Model validation is conducted through a cantilever pipeline case study featuring nonlinear support conditions,where strong agreement between the proposed model's predictions and finiteelement benchmark solutions demonstrates its reliability.Subsequently,a comprehensive parametric study investigates the combined effects of foundation stiffness,boundary constraints,excitation intensity,and nonlinear interaction terms on the vibrational response of the cantilever pipe.This systematic approach yields critical insights for practical engineering designs and applications.
基金funded by National Nature Science Foundation of China(92266203)National Nature Science Foundation of China(52205278)+1 种基金Key Projects of Shijiazhuang Basic Research Program(241791077A)Central Guide Local Science and Technology Development Fund Project of Hebei Province(246Z1022G).
文摘In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization.
基金Project supported by the Teaching and Research Award Program for the Outstanding YoungTeachers in Higher Education Institutes of Munistry of Education, P.R.China
文摘By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it.Global and local superlinear/quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.
基金The National Natural Science Foundation of China(No.10972151,11272227)
文摘For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC1501901 and 2017YFA0603901)the Beijing Natural Science Foundation (Grant No. JQ18001)
文摘A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrainfollowing grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future.
基金Supported by the National Natural Science Foundation of China(1 980 1 0 0 9) and by the Natural Sci-ence Foundation of Guangxi
文摘A new SQP type feasible method for inequality constrained optimization is presented,it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations.The directions of the master algorithm are generated by only one quadratic programming, and its step\|size is always one, the directions of the auxiliary algorithm are new “second\|order” feasible descent. Under suitable assumptions,the algorithm is proved to possess global and strong convergence, superlinear and quadratic convergence.
基金supported by the National Natural Science Foundation of China (No.10662003)Educational Commission of Guangxi Province of China (No.200807MS109)
文摘The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear deformation theory, only considering the shearing deformation of the viscoelastic layer, the integrated first order differential matrix equation of a passive constrained layer damping rotational shell is established by combining with the normal equilibrium equation of the viscoelastic layer.A highly precise transfer matrix method is developed by extended homogeneous capacity precision integration technology.The numerical results show that present method is accurate and effective.
基金Project supported by the National Natural Science Foundation of China(No.11432010)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)+2 种基金the 111Project of China(No.B07050)the Fundamental Research Funds for the Central Universities(No.310201401JCQ01001)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201517)
文摘Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
文摘Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.
文摘By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it. Global and local superlinear/ quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
文摘In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.
文摘The constrained global optimization problem being considered, a modified integral_level set method was illustrated based on Chew_Zheng's paper on Integral Global Optimization and (Wu's) paper on Implementable Algorithm Convergence of Modified Integral_Level Set Method for Global Optimization Problem. It has two characters: 1) Each phase must construct a new function which has the same global optimal value as that of primitive objective function; 2) Comparing it with (Zheng's) method, solving level set procedure is avoided. An implementable algorithm also is given and it is proved that this algorithm is convergent.
基金Supported by the Science and Technology Project of Guangxi(Guike AD23023002)。
文摘In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.
基金National Natural Science Foundation of China(No.52373281)National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)。
文摘The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.
文摘Generally, the procedure for Solving Security constrained unit commitment (SCUC) problems within Lagrangian Relaxation framework is partitioned into two stages: one is to obtain feasible SCUC states;the other is to solve the economic dispatch of generation power among all the generating units. The core of the two stages is how to determine the feasibility of SCUC states. The existence of ramp rate constraints and security constraints increases the difficulty of obtaining an analytical necessary and sufficient condition for determining the quasi-feasibility of SCUC states at each scheduling time. However, a numerical necessary and sufficient numerical condition is proposed and proven rigorously based on Benders Decomposition Theorem. Testing numerical example shows the effectiveness and efficiency of the condition.
基金supported by the National Natural Science Foundation of China (Grant No. 61271323)the Open Project from State Key Laboratory of Millimeter Waves, China (Grant No. K200913)
文摘Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an antenna array composed of 9 antennas is applied to the detection. The double constrained robust capon beamforming (DCRCB) algorithm is used for reconstructing the breast image due to its better stability and high signal-to-interference-plus-noise ratio (SINR). The successful detection of a tumor of 2 mm in diameter shown in the reconstruction demonstrates the robustness of the DCRCB beamforming algorithm. This study verifies the feasibility of detecting small breast tumors by using the DCRCB imaging algorithm.
基金sponsored by geological Survey Project of China Geological Survey(DD20189210).
文摘The damped least squares inversion principle is applied to the transient electromagnetic one-dimensional inversion of electrical sources,and a new model is obtained by continuously iterating the initial model,thereby fitting the observed transient electromagnetic response,and performing one-dimensional inversion through induced electromotive force play.In this paper,in the damped least squares inversion,constraints are added to the Jacobian matrix,and simultaneous constraint equations and conventional inversion equations are solved.By weighting the constraint parameters,the difference between adjacent resistivities and layer thicknesses is minimized.Finally,K-type and H-type theoretical models were used to verify the reliability of the algorithm,and compared with the conventional transient electromagnetic damping least squares inversion.