To monitor nuclear and radiation emergencies,it is crucial to obtain accurate in situ measurements of the environmentalγ radiation dose rate from key radionuclides,particularly for large radioactive surface sources.T...To monitor nuclear and radiation emergencies,it is crucial to obtain accurate in situ measurements of the environmentalγ radiation dose rate from key radionuclides,particularly for large radioactive surface sources.The methods currently used for measuring dose rates are inadequate for obtaining the dose rates of key radionuclides and have large angular response errors when monitoring surface sources.To address this practical problem,this study proposes three methods for measuring the dose rate:the weighted peak total ratio,mean value regression,and numerical integration methods.These methods are based on energy-spectrum measurement data,and they were theoretically derived and numerically evaluated.Finally,a 1-m-long hexagonal radioactive surface source was integrated into a larger surface source.In situ measurement experiments were conducted on a large radioactive surface source using a dose-rate meter and a portable HPGespectrometer to analyze the errors of the three aforementioned methods and verify their validity.展开更多
Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical anal...Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical analyses and Gamma ray spectroscopy data of alkaline rocks associated with the Amreit complex.The fieldwork was achieved by the collection of more than forty samples from alkaline granites and alkaline syenites.The youngest rocks cropping out in the study area are the cogenetic alkaline rocks,ranging from alkaline granite to alkaline syenite.These alkaline rocks are composed essentially of K-feldspar,alkali amphiboles(arfvedsonite),and sodic pyroxene,with accessories such as zircon,apatite,and ilmenite.Mineral characterization of the highly radioactive zones in both alkaline granite and alkaline syenite displays enrichment in monazite,thorite,zircon,ferro-columbite,xenotime,and allanite minerals.Geochemical analyses indicate that the Amreit rocks are alkaline with peralkaline affinity and have high concentrations of total alkalis(K_(2)O+Na_(2)O),large ion lithophile elements(LILEs;Ba and Rb),high field strength elements(HFSEs;Y,Zr and Nb),rare earth elements(REEs)and significantly depleted in K,Sr,P,Ti,and Eu,typically of post-collision A-type granites.Typically,the Amreit alkaline igneous rocks are classified as within plate granites and display A2 subtype characteristics.The fractionation of K-feldspars played a distinctive role during the magmatic evolution of these alkaline rocks.The geochemical characteristics indicate that the studied alkaline igneous rocks which were originated by fractional crystallization of alkaline magmas were responsible for the enrichment of the REE and rare metals in the residual melt.The high radioactivity is essentially related to accessory minerals,such as zircon,allanite,and monazite.The alkaline granite is the most U-and Thrich rock,where radioactivity level reaches up to 14.7 ppm(181.55 Bq/kg)e U,40.6 ppm(164.84 Bq/kg)e Th,whereas in alkaline syenite radioactivity level is 8.5 ppm(104.96 Bq/kg)e U,30.2 ppm(122.61 Bq/kg)e Th.These observations suppose that these alkaline rocks may be important targets for REEs and radioactive mineral exploration.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in a...Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.展开更多
In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly...In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly(effectively imposing a wavelet-spectrum weighting,often akin to an amplitude-squared bias).This redundancy degrades structural fidelity and amplitude balance yet is frequently overlooked.We(i)formalize the mechanism by which cross-correlation duplicates the source-wavelet amplitude effect in both migration and demigration,and(ii)introduce a source-equalized operator that removes the redundancy by deconvolving(or dividing by)the wavelet amplitude spectrum in the imaging condition and its demigration counterpart,while leaving phase/kinematics intact.Using a band-limited Ricker wavelet on a two-layer model and on Marmousi,we show that,if unmanaged,the redundant wavelet spectrum broadens main lobes,introduces ringing,and suppresses vertical resolution in migrated images,and inflates spectrum mismatches between demigrated and observed data even when peak times agree.With our correction,images recover observed-data-consistent bandwidth and sharpened interfaces,and demigrated data also exhibit improved spectrum conformity and reduced amplitude misfit.The results clarify when source amplitudes matter,why cross-correlation makes them redundantly matter,and how a lightweight spectral correction restores physically meaningful amplitude behavior in wave-equation migration/demigration.展开更多
We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-...We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-energy calibration source with a half-life of 35.01 days,making it suitable for calibration in the low-energy region of liquid xenon dark-matter experiments.Radioactive isotope^(37)Ar was produced by irradiating ^(36)Ar with thermal neutrons.It was subsequently measured in a gaseous xenon time projection chamber(GXe TPC)to validate its radioactivity.Our results demonstrate that^(37)Ar is an effective and viable calibration source that offers precise calibration capabilities in the low-energy domain of xenon-based detectors.展开更多
We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),org...We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),organics(33%)constituted the largest fraction,followed by nitrate(30%),sulfate(18%),ammonium(15%),chloride(3%),and rBC(2%).Four organic aerosol(OA)subcomponents were identified,including two primary OA(POA)and two secondary OA(SOA).The less-oxidized SOA(LO-OOA)contributes the most to the total OA mass(59%).LO-OOA is tightly correlated with the tracer ion C_(2)H_(4)O_(2)^(+)from levoglucosan,and another aged biomass-burning derived species,K_(3)SO_(4)^(+),suggesting it was likely influenced by aged biomass-burning OA.Our study also revealed that fireworks during the Spring Festival have a detrimental impact on air quality,contributing to secondary formation and accumulation under static winter meteorological conditions,prolonging the pollution duration.Also,LO-OOA was found to have the strongest light-absorbing ability.Our results highlight that the light absorption of LO-OOA can mainly be attributed to the C_(x)H_(y)N^(+) family,increased with the double-bond equivalent value.The more-oxidized SOA(MO-OOA)exhibited a negligible light absorption and was strongly correlated with daytime photochemical processes,implying a light-bleaching effect.This study enhances our understanding of the regional contribution of biomass combustion and fireworks to PM_(1) pollution in Nanjing,a typical megacity in the Yangtze River Delta region,during winter,aiding in the development of strategies for long-term air quality improvement in the region.展开更多
Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previo...Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previous research,providing a long-term perspective on carbonyl compound variations and their environmental implica-tions.Atmospheric observations were conducted at Beijing(BJ)and Xianghe(XH)during the summer and winter months of 2018,2019,and 2023 to study the sources and impacts of carbonyl compounds in typical urban areas and peri‑urban areas.Notably,concentrations in the summer of 2023 increased compared to 2018 and 2019.The predominant carbonyl compounds—formaldehyde,acetaldehyde,and acetone—accounted for over 60%of the total.The mean values of OFP in BJ ranged from 18.55 to 58.61μg/m3,lower than those in XH(29.82 to 65.48μg/m3),with formaldehyde and acetaldehyde contributing over 80%of the total.SOAP exhibited a similar pattern,with values in XH(69.21 to 508.55μg/m3)significantly exceeding those in BJ(34.47 to 159.78μg/m3).The PMF model highlighted vehicle exhaust,secondary pollution,and biomass combustion as major sources of carbonyl compounds,emphasizing differences in source contributions between the two regions.This study’s com-parative analysis over different years and locations provides new insights into the dynamic changes in carbonyl compounds and their environmental importance.These results not only reinforce the importance of carbonyl compounds regulation but also offer a valuable reference for evaluating and refining emission control strategies during this period.展开更多
Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China ...Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China in winter and spring of 2021.The results show that the average concentration of PM_(2.5) decreased by 47%from winter to spring,while volume-normalized and mass-normalized OP(i.e.,OP_(v) and OP_(m))increased by 6%and 69%,respectively.It suggests that the decline of PM_(2.5) may not necessarily decrease the health risks and the intrinsic toxicity of PM_(2.5).Variations of OP_(v) and OP_(m) among different periods were related to the different source contributions and environmental conditions.The positive matrix factorization model was used to identify the major sources of OP_(v).OP_(v) was mainly contributed by biomass burning/industrial emissions(29%),soil/road dust(20%),secondary sulfate(14%),and coal combustion(13%)in winter.Different major sources were resolved to be secondary sulfate(36%),biological sources(21%),and marine vessels(20%)in spring,presenting the substantial contribution of biological sources.The analysis shows strong associations between OP_(v) and both live and dead bacteria,further confirming the important contribution of bioaerosols to the enhancement of OP.This study highlights the importance of understanding OP in ambient PM_(2.5) in terms of public health impact and provides a new insight into the biological contribution to OP.展开更多
Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tra...Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tracers.This study comprehensively investigates chemical composition of PM_(2.5),including both inorganic and organic compounds throughout haze and post-haze periods in 2019 at a rural site of Northern Thailand.Average PM_(2.5) concentrations during haze and post-haze period were 87±36 and 21±11μg/m^(3),respectively.Organic matter was the dominant contributor in PM_(2.5) mass,followed by water soluble inorganic ions and mineral dust.Molecular markers,including levoglucosan,dehydroabietic acid,and 4-nitrocatechol,and ions(Cl^(-),and K^(+)),were used to characterize low haze(PM_(2.5)<100μg/m^(3))and episodic haze(PM_(2.5)>100μg/m^(3)).Low haze is associated with local aerosols from agricultural waste burning,while episodic haze is linked to aged aerosols from mixed agricultural waste,softwood,and hardwood burning.Source apportionment incorporating these molecular markers in receptor modelling(Positive matrix factorization),identified three distinct biomass burning sources:mixed,local,and aged biomass burnings,contributing 31,19 and 13%of PM_(2.5) during haze period.During post-haze period,contributions shifted,with local biomass burning(32%)comparable to secondary sulfate(34%)and mixed dust and traffic sources(26%).These findings demonstrate that both regional and local sources con-tribute to severe haze,highlighting the need for integrated policies for cross-border cooperation as well as stricter regulations to reduce biomass burning in Northern Thailand and Southeast Asia.展开更多
To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.T...To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.展开更多
Today, millions of electrocommunication, electric, medical, and industrial devices use battery. Batteries with long life and high energy density seem to be essential in medical, military, oil and mining, aerospace are...Today, millions of electrocommunication, electric, medical, and industrial devices use battery. Batteries with long life and high energy density seem to be essential in medical, military, oil and mining, aerospace areas as well as conditions in which access is difficult and in situations where replacement or recharging of battery is costly.In this regard, the use of radiation energy resulting from radioactive materials and its conversion to electric energy can be effective in making batteries. In the present study,various Mo-99 radioisotope values with a half-life of 65.98 h were used as a soluble radioactive source in two materials of water and aqua regia. Then, by comparing the results of the Monte Carlo simulations program MCNPX for these two solutions, it was found that when the water is used instead of aqua regia(for idealization), the values of the superficial current of electrons, the volumetric flux of electrons, and the deposited energy in the volume containing the radioactive solution increased by 10.80, 4.10,and 13.80%, respectively. Also, the short-circuit current and energy conversion efficiency of this battery with a concentration of 0.01 molar, Mo-99 dissolved in the aqua regia are 0.79μA and 16.47%, respectively.展开更多
This report presents a design system based on the use of CsI(TI) detectors to search for lost radioactive sources that are dangerous and harmful to individuals, including searching persons. For this purpose, the GEANT...This report presents a design system based on the use of CsI(TI) detectors to search for lost radioactive sources that are dangerous and harmful to individuals, including searching persons. For this purpose, the GEANT4 simulation toolkit was utilized to develop a system based on three detectors. Various simulated analyses were performed on the dose rates of the three detectors using different source–detector distances and detector separation. There were good agreement between the simulated results and the experimentally measured data. A new method was discussed to detect and search for radioactive sources based only on the dose rates in detectors with source activity. Numerical analyses were performed based on the measured dose rates and the difference of distances to determine the actual location of the lost single or multiple γ-ray sources at a specific angle. The detection limit was calculated from the background radiation to establish the sensitivity and capability of the proposed detector system. This system can be applied in fields in which it is necessary to locate unknown radioactive sources.展开更多
Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuri...Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.展开更多
In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small to...In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small town named Tamusu,Western China.The study area is with complex surface conditions,thus the seismic exploration encountered a variettraveltimey of technical difculties such as crossing obstacles,de-noising harmful scattered waves,and building complex near-surface velocity models.In order to address those problems,techniques including cross-obstacle seismic geometry design,angle-domain harmful scattered noise removal,and an acoustic wave equation-based inversion method jointly utilizing both the and waveform of frst arrival waves were adopted.The fnal seismic images clearly exhibit the target rock’s unconformable contact boundary and its top interface beneath the sedimentary and weathered layers.On this basis,it could be confrmed that the target rock is not thin or has been transported by geological process from somewhere else,but a native and massive rock.There are a few small size fractures whose space distribution could be revealed by seismic images within the rock.The fractures should be kept away.Based on current research,it could be considered that active source seismic exploration is demanded during the sitting process of the geological disposal repository for nuclear waste.The seismic acquisition and processing techniques proposed in the present paper would ofer a good reference value for similar researches in the future.展开更多
Using neutron activation analysis method we determined contents of rare-earth and radioactive elements (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Cs, Rb, Sb, Sc, Sr, Ba, U, Th) in source water system of the Changjiang (Yangtze)...Using neutron activation analysis method we determined contents of rare-earth and radioactive elements (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Cs, Rb, Sb, Sc, Sr, Ba, U, Th) in source water system of the Changjiang (Yangtze) River, which is mainly composed of the Tuotuo River, the Chumaer River, and the Buqu River. The contents of these elements in the unflltered water have a great variation and a close correlation with the water turbidity. The contents of these elements in filtered water only have a little variation and are lower than those in the unflltered water. The variations in contents of these elements in sediments are also very little. These elements in the unifiltered water are in geometric distribution, except Sc. Most of the elements in sediments are in arithmetic distribution, but Cs, Sb, Th, are in deviation distribution. The contents of most of these elements in the river source area correspond to the contents of fresh water of the earth. Most of these elements have a little variation in their展开更多
Discrete high energy y-rays in~5-10MeV region were produced utilizing a~105/s Am-Be neutron source through the radiation capture process.The device can be conveniently used for energy calibration and relative efficien...Discrete high energy y-rays in~5-10MeV region were produced utilizing a~105/s Am-Be neutron source through the radiation capture process.The device can be conveniently used for energy calibration and relative efficiency determination forγ-detectors.展开更多
Iodine-125 seed is widely used in brachytherapy of intraocular tumors,brain tumors,and prostate cancer.The1 25I seed is prepared by depositing 125I on a silver rod.This work was aimed at investigating effects of diffe...Iodine-125 seed is widely used in brachytherapy of intraocular tumors,brain tumors,and prostate cancer.The1 25I seed is prepared by depositing 125I on a silver rod.This work was aimed at investigating effects of different parameters on the iodine adsorption,so as to optimize the process for preparing1 25I core of the seed.The parameters investigated include kind and concentration of halogenation reagent,halogenation time,adsorption time,pH and carrier iodine quantity.展开更多
Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Na...Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Natural source extraction and artificial synthesis provide a rich source of collagen.As a macromolecular material,collagen has good application potential in cosmetics,pharmaceutical,medical and food industries.Collagen has generated a great deal of interest in the cosmetic industry due to its abundance,strength,and direct correlation with skin aging.Collagen is widely used in cosmetics due to its unique structure,good biocompatibility and low antigenicity,as well as rich biological functions.To enhance the youthfulness and health of the user,the cosmetic industry adds collagen to products such as eye creams,face creams,and nutritional supplements,and uses it in medical aesthetic techniques such as tissue fillers,skin replacement,and soft skin enhancement.This paper mainly reviews the sources and types of collagen used in cosmetics industry,then introduces the effects of collagen in cosmetics and prospects the development prospects of collagen in dermatologic and cosmetic fields.展开更多
文摘To monitor nuclear and radiation emergencies,it is crucial to obtain accurate in situ measurements of the environmentalγ radiation dose rate from key radionuclides,particularly for large radioactive surface sources.The methods currently used for measuring dose rates are inadequate for obtaining the dose rates of key radionuclides and have large angular response errors when monitoring surface sources.To address this practical problem,this study proposes three methods for measuring the dose rate:the weighted peak total ratio,mean value regression,and numerical integration methods.These methods are based on energy-spectrum measurement data,and they were theoretically derived and numerically evaluated.Finally,a 1-m-long hexagonal radioactive surface source was integrated into a larger surface source.In situ measurement experiments were conducted on a large radioactive surface source using a dose-rate meter and a portable HPGespectrometer to analyze the errors of the three aforementioned methods and verify their validity.
文摘Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical analyses and Gamma ray spectroscopy data of alkaline rocks associated with the Amreit complex.The fieldwork was achieved by the collection of more than forty samples from alkaline granites and alkaline syenites.The youngest rocks cropping out in the study area are the cogenetic alkaline rocks,ranging from alkaline granite to alkaline syenite.These alkaline rocks are composed essentially of K-feldspar,alkali amphiboles(arfvedsonite),and sodic pyroxene,with accessories such as zircon,apatite,and ilmenite.Mineral characterization of the highly radioactive zones in both alkaline granite and alkaline syenite displays enrichment in monazite,thorite,zircon,ferro-columbite,xenotime,and allanite minerals.Geochemical analyses indicate that the Amreit rocks are alkaline with peralkaline affinity and have high concentrations of total alkalis(K_(2)O+Na_(2)O),large ion lithophile elements(LILEs;Ba and Rb),high field strength elements(HFSEs;Y,Zr and Nb),rare earth elements(REEs)and significantly depleted in K,Sr,P,Ti,and Eu,typically of post-collision A-type granites.Typically,the Amreit alkaline igneous rocks are classified as within plate granites and display A2 subtype characteristics.The fractionation of K-feldspars played a distinctive role during the magmatic evolution of these alkaline rocks.The geochemical characteristics indicate that the studied alkaline igneous rocks which were originated by fractional crystallization of alkaline magmas were responsible for the enrichment of the REE and rare metals in the residual melt.The high radioactivity is essentially related to accessory minerals,such as zircon,allanite,and monazite.The alkaline granite is the most U-and Thrich rock,where radioactivity level reaches up to 14.7 ppm(181.55 Bq/kg)e U,40.6 ppm(164.84 Bq/kg)e Th,whereas in alkaline syenite radioactivity level is 8.5 ppm(104.96 Bq/kg)e U,30.2 ppm(122.61 Bq/kg)e Th.These observations suppose that these alkaline rocks may be important targets for REEs and radioactive mineral exploration.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0208)the National Natural Science Foundation of China(Nos.42171148 and 42330512)the Key R&D Project from the Science and Technology Department of Tibet(No.XZ202501ZY0030).
文摘Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.
基金supported by the National Natural Science Foundation of China(42430303)Strategy Priority Research Program(Category B)of the Chinese Academy of Sciences(XDB0710000)+2 种基金National Natural Science Foundation of China(42288201)the National Key R&D Program of China(2023YFF0803203)the IGGCAS start-up funding(Grant No.E251510101).
文摘In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly(effectively imposing a wavelet-spectrum weighting,often akin to an amplitude-squared bias).This redundancy degrades structural fidelity and amplitude balance yet is frequently overlooked.We(i)formalize the mechanism by which cross-correlation duplicates the source-wavelet amplitude effect in both migration and demigration,and(ii)introduce a source-equalized operator that removes the redundancy by deconvolving(or dividing by)the wavelet amplitude spectrum in the imaging condition and its demigration counterpart,while leaving phase/kinematics intact.Using a band-limited Ricker wavelet on a two-layer model and on Marmousi,we show that,if unmanaged,the redundant wavelet spectrum broadens main lobes,introduces ringing,and suppresses vertical resolution in migrated images,and inflates spectrum mismatches between demigrated and observed data even when peak times agree.With our correction,images recover observed-data-consistent bandwidth and sharpened interfaces,and demigrated data also exhibit improved spectrum conformity and reduced amplitude misfit.The results clarify when source amplitudes matter,why cross-correlation makes them redundantly matter,and how a lightweight spectral correction restores physically meaningful amplitude behavior in wave-equation migration/demigration.
基金supported by National Key R&D grant from the Ministry of Science and Technology of China(Nos.2021YFA1601600,2023YFA1606200)National Science Foundation of China(Nos.12090062,12105008)the Major State Basic Research Development Program of China.
文摘We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-energy calibration source with a half-life of 35.01 days,making it suitable for calibration in the low-energy region of liquid xenon dark-matter experiments.Radioactive isotope^(37)Ar was produced by irradiating ^(36)Ar with thermal neutrons.It was subsequently measured in a gaseous xenon time projection chamber(GXe TPC)to validate its radioactivity.Our results demonstrate that^(37)Ar is an effective and viable calibration source that offers precise calibration capabilities in the low-energy domain of xenon-based detectors.
基金support from the Natural Science Foundation of Jiangsu Province(Grant No.BK20240036)the National Natural Science Foundation of China(Grant Nos.U24A20515,22276099,and 22361162668)Guangxi Key Research and Development Program,China(Grant No.Guike AB24010074)。
文摘We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),organics(33%)constituted the largest fraction,followed by nitrate(30%),sulfate(18%),ammonium(15%),chloride(3%),and rBC(2%).Four organic aerosol(OA)subcomponents were identified,including two primary OA(POA)and two secondary OA(SOA).The less-oxidized SOA(LO-OOA)contributes the most to the total OA mass(59%).LO-OOA is tightly correlated with the tracer ion C_(2)H_(4)O_(2)^(+)from levoglucosan,and another aged biomass-burning derived species,K_(3)SO_(4)^(+),suggesting it was likely influenced by aged biomass-burning OA.Our study also revealed that fireworks during the Spring Festival have a detrimental impact on air quality,contributing to secondary formation and accumulation under static winter meteorological conditions,prolonging the pollution duration.Also,LO-OOA was found to have the strongest light-absorbing ability.Our results highlight that the light absorption of LO-OOA can mainly be attributed to the C_(x)H_(y)N^(+) family,increased with the double-bond equivalent value.The more-oxidized SOA(MO-OOA)exhibited a negligible light absorption and was strongly correlated with daytime photochemical processes,implying a light-bleaching effect.This study enhances our understanding of the regional contribution of biomass combustion and fireworks to PM_(1) pollution in Nanjing,a typical megacity in the Yangtze River Delta region,during winter,aiding in the development of strategies for long-term air quality improvement in the region.
基金supported by the National Natural Science Foundation of China(Nos.41905108 and 42130704).
文摘Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previous research,providing a long-term perspective on carbonyl compound variations and their environmental implica-tions.Atmospheric observations were conducted at Beijing(BJ)and Xianghe(XH)during the summer and winter months of 2018,2019,and 2023 to study the sources and impacts of carbonyl compounds in typical urban areas and peri‑urban areas.Notably,concentrations in the summer of 2023 increased compared to 2018 and 2019.The predominant carbonyl compounds—formaldehyde,acetaldehyde,and acetone—accounted for over 60%of the total.The mean values of OFP in BJ ranged from 18.55 to 58.61μg/m3,lower than those in XH(29.82 to 65.48μg/m3),with formaldehyde and acetaldehyde contributing over 80%of the total.SOAP exhibited a similar pattern,with values in XH(69.21 to 508.55μg/m3)significantly exceeding those in BJ(34.47 to 159.78μg/m3).The PMF model highlighted vehicle exhaust,secondary pollution,and biomass combustion as major sources of carbonyl compounds,emphasizing differences in source contributions between the two regions.This study’s com-parative analysis over different years and locations provides new insights into the dynamic changes in carbonyl compounds and their environmental importance.These results not only reinforce the importance of carbonyl compounds regulation but also offer a valuable reference for evaluating and refining emission control strategies during this period.
基金supported by the National Natural Science Foundation of China(No.41975156)and the Fundamental Research Funds for the Central Universities.
文摘Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China in winter and spring of 2021.The results show that the average concentration of PM_(2.5) decreased by 47%from winter to spring,while volume-normalized and mass-normalized OP(i.e.,OP_(v) and OP_(m))increased by 6%and 69%,respectively.It suggests that the decline of PM_(2.5) may not necessarily decrease the health risks and the intrinsic toxicity of PM_(2.5).Variations of OP_(v) and OP_(m) among different periods were related to the different source contributions and environmental conditions.The positive matrix factorization model was used to identify the major sources of OP_(v).OP_(v) was mainly contributed by biomass burning/industrial emissions(29%),soil/road dust(20%),secondary sulfate(14%),and coal combustion(13%)in winter.Different major sources were resolved to be secondary sulfate(36%),biological sources(21%),and marine vessels(20%)in spring,presenting the substantial contribution of biological sources.The analysis shows strong associations between OP_(v) and both live and dead bacteria,further confirming the important contribution of bioaerosols to the enhancement of OP.This study highlights the importance of understanding OP in ambient PM_(2.5) in terms of public health impact and provides a new insight into the biological contribution to OP.
文摘Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tracers.This study comprehensively investigates chemical composition of PM_(2.5),including both inorganic and organic compounds throughout haze and post-haze periods in 2019 at a rural site of Northern Thailand.Average PM_(2.5) concentrations during haze and post-haze period were 87±36 and 21±11μg/m^(3),respectively.Organic matter was the dominant contributor in PM_(2.5) mass,followed by water soluble inorganic ions and mineral dust.Molecular markers,including levoglucosan,dehydroabietic acid,and 4-nitrocatechol,and ions(Cl^(-),and K^(+)),were used to characterize low haze(PM_(2.5)<100μg/m^(3))and episodic haze(PM_(2.5)>100μg/m^(3)).Low haze is associated with local aerosols from agricultural waste burning,while episodic haze is linked to aged aerosols from mixed agricultural waste,softwood,and hardwood burning.Source apportionment incorporating these molecular markers in receptor modelling(Positive matrix factorization),identified three distinct biomass burning sources:mixed,local,and aged biomass burnings,contributing 31,19 and 13%of PM_(2.5) during haze period.During post-haze period,contributions shifted,with local biomass burning(32%)comparable to secondary sulfate(34%)and mixed dust and traffic sources(26%).These findings demonstrate that both regional and local sources con-tribute to severe haze,highlighting the need for integrated policies for cross-border cooperation as well as stricter regulations to reduce biomass burning in Northern Thailand and Southeast Asia.
基金supported by the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2024ZD0302502 for WZ)the National Natural Science Foundation of China(Grant No.92365210 for WZ)+1 种基金Tsinghua Initiative Scientific Research Program (for WZ)the project of Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT,for YH)。
文摘To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.
文摘Today, millions of electrocommunication, electric, medical, and industrial devices use battery. Batteries with long life and high energy density seem to be essential in medical, military, oil and mining, aerospace areas as well as conditions in which access is difficult and in situations where replacement or recharging of battery is costly.In this regard, the use of radiation energy resulting from radioactive materials and its conversion to electric energy can be effective in making batteries. In the present study,various Mo-99 radioisotope values with a half-life of 65.98 h were used as a soluble radioactive source in two materials of water and aqua regia. Then, by comparing the results of the Monte Carlo simulations program MCNPX for these two solutions, it was found that when the water is used instead of aqua regia(for idealization), the values of the superficial current of electrons, the volumetric flux of electrons, and the deposited energy in the volume containing the radioactive solution increased by 10.80, 4.10,and 13.80%, respectively. Also, the short-circuit current and energy conversion efficiency of this battery with a concentration of 0.01 molar, Mo-99 dissolved in the aqua regia are 0.79μA and 16.47%, respectively.
基金Xi’an Jiaotong University and was fully supported by key research and development plan of Shandong Province(No.2017CXGC0916)and the Chinese government
文摘This report presents a design system based on the use of CsI(TI) detectors to search for lost radioactive sources that are dangerous and harmful to individuals, including searching persons. For this purpose, the GEANT4 simulation toolkit was utilized to develop a system based on three detectors. Various simulated analyses were performed on the dose rates of the three detectors using different source–detector distances and detector separation. There were good agreement between the simulated results and the experimentally measured data. A new method was discussed to detect and search for radioactive sources based only on the dose rates in detectors with source activity. Numerical analyses were performed based on the measured dose rates and the difference of distances to determine the actual location of the lost single or multiple γ-ray sources at a specific angle. The detection limit was calculated from the background radiation to establish the sensitivity and capability of the proposed detector system. This system can be applied in fields in which it is necessary to locate unknown radioactive sources.
文摘Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.
基金This research was supported by the National Key R&D Program of China(No.2018YFC1503200)the Nuclear Waste Geological Disposal Project([2013]727)+2 种基金the National Natural Science Foundation of China(Grant Nos.41790463 and 41730425)the Spark Program of Earthquake Sciences of CEA(XH18063Y)the Special Fund of GEC of CEA(YFGEC2017003,SFGEC2014006).
文摘In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small town named Tamusu,Western China.The study area is with complex surface conditions,thus the seismic exploration encountered a variettraveltimey of technical difculties such as crossing obstacles,de-noising harmful scattered waves,and building complex near-surface velocity models.In order to address those problems,techniques including cross-obstacle seismic geometry design,angle-domain harmful scattered noise removal,and an acoustic wave equation-based inversion method jointly utilizing both the and waveform of frst arrival waves were adopted.The fnal seismic images clearly exhibit the target rock’s unconformable contact boundary and its top interface beneath the sedimentary and weathered layers.On this basis,it could be confrmed that the target rock is not thin or has been transported by geological process from somewhere else,but a native and massive rock.There are a few small size fractures whose space distribution could be revealed by seismic images within the rock.The fractures should be kept away.Based on current research,it could be considered that active source seismic exploration is demanded during the sitting process of the geological disposal repository for nuclear waste.The seismic acquisition and processing techniques proposed in the present paper would ofer a good reference value for similar researches in the future.
文摘Using neutron activation analysis method we determined contents of rare-earth and radioactive elements (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Cs, Rb, Sb, Sc, Sr, Ba, U, Th) in source water system of the Changjiang (Yangtze) River, which is mainly composed of the Tuotuo River, the Chumaer River, and the Buqu River. The contents of these elements in the unflltered water have a great variation and a close correlation with the water turbidity. The contents of these elements in filtered water only have a little variation and are lower than those in the unflltered water. The variations in contents of these elements in sediments are also very little. These elements in the unifiltered water are in geometric distribution, except Sc. Most of the elements in sediments are in arithmetic distribution, but Cs, Sb, Th, are in deviation distribution. The contents of most of these elements in the river source area correspond to the contents of fresh water of the earth. Most of these elements have a little variation in their
文摘Discrete high energy y-rays in~5-10MeV region were produced utilizing a~105/s Am-Be neutron source through the radiation capture process.The device can be conveniently used for energy calibration and relative efficiency determination forγ-detectors.
基金Supported by development fund,CAEP(2009B0301028)
文摘Iodine-125 seed is widely used in brachytherapy of intraocular tumors,brain tumors,and prostate cancer.The1 25I seed is prepared by depositing 125I on a silver rod.This work was aimed at investigating effects of different parameters on the iodine adsorption,so as to optimize the process for preparing1 25I core of the seed.The parameters investigated include kind and concentration of halogenation reagent,halogenation time,adsorption time,pH and carrier iodine quantity.
文摘Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Natural source extraction and artificial synthesis provide a rich source of collagen.As a macromolecular material,collagen has good application potential in cosmetics,pharmaceutical,medical and food industries.Collagen has generated a great deal of interest in the cosmetic industry due to its abundance,strength,and direct correlation with skin aging.Collagen is widely used in cosmetics due to its unique structure,good biocompatibility and low antigenicity,as well as rich biological functions.To enhance the youthfulness and health of the user,the cosmetic industry adds collagen to products such as eye creams,face creams,and nutritional supplements,and uses it in medical aesthetic techniques such as tissue fillers,skin replacement,and soft skin enhancement.This paper mainly reviews the sources and types of collagen used in cosmetics industry,then introduces the effects of collagen in cosmetics and prospects the development prospects of collagen in dermatologic and cosmetic fields.