Indium selenide,aⅢ–Ⅴgroup semiconductor with layered structure,attracts intense attention in various photoelectric applications,due to its outstanding properties.Here,we report super deformability and thermoelectri...Indium selenide,aⅢ–Ⅴgroup semiconductor with layered structure,attracts intense attention in various photoelectric applications,due to its outstanding properties.Here,we report super deformability and thermoelectricity ofγ-In Se single crystals grown by modified Bridgeman method.The crystal structure of In Se is studied systematically by transmission electron microscopy methods combined with x-ray diffraction and Raman spectroscopy.The predominate phase ofγ-In Se with dense stacking faults and local multiphases is directly demonstrated at atomic scale.The bulkγ-In Se crystals demonstrate surprisingly high intrinsic super deformative ability which is highly pliable with bending strains exceeding12.5%and 264%extension by rolling.At the meantime,In Se also possesses graphite-like features which is printable,writable,and erasable.Finally,the thermoelectric properties ofγ-In Se bulk single crystals are preliminary studied and thermal conductivity can be further reduced via bending-induced defects.These findings will enrich the knowledge of structural and mechanical properties'flexibility of In Se and shed lights on the intrinsic and unique mechanical properties of In Se polytypes.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11674040,11604032,51472036,51672270,and 11904039)the Fundamental Research Funds for the Central Universities,China(Grant No.106112016CDJZR308808)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH016)。
文摘Indium selenide,aⅢ–Ⅴgroup semiconductor with layered structure,attracts intense attention in various photoelectric applications,due to its outstanding properties.Here,we report super deformability and thermoelectricity ofγ-In Se single crystals grown by modified Bridgeman method.The crystal structure of In Se is studied systematically by transmission electron microscopy methods combined with x-ray diffraction and Raman spectroscopy.The predominate phase ofγ-In Se with dense stacking faults and local multiphases is directly demonstrated at atomic scale.The bulkγ-In Se crystals demonstrate surprisingly high intrinsic super deformative ability which is highly pliable with bending strains exceeding12.5%and 264%extension by rolling.At the meantime,In Se also possesses graphite-like features which is printable,writable,and erasable.Finally,the thermoelectric properties ofγ-In Se bulk single crystals are preliminary studied and thermal conductivity can be further reduced via bending-induced defects.These findings will enrich the knowledge of structural and mechanical properties'flexibility of In Se and shed lights on the intrinsic and unique mechanical properties of In Se polytypes.