期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new interaction between Abi-1 and βPIX involved in PDGF-activated actin cytoskeleton reorganisation 被引量:3
1
作者 Fanny Campa NikolausMachuy +1 位作者 AlexanderKlein ThomasRudel 《Cell Research》 SCIE CAS CSCD 2006年第9期759-770,共12页
Members of the Rho family of GTPases are key regulators of the actin cytoskeleton. In particular, activated Racl stimulates membrane dorsal ruffle formation in response to platelet-derived growth factor (PDGF). Abl-... Members of the Rho family of GTPases are key regulators of the actin cytoskeleton. In particular, activated Racl stimulates membrane dorsal ruffle formation in response to platelet-derived growth factor (PDGF). Abl-interactor (Abi)- 1 and βP1X, a guanine nucleotide exchange factor for Racl, localise at these Rac1-induced actin structures and play important roles in the induction of membrane dorsal ruffling in response to PDGF in fibroblasts. Here, we demonstrate a novel interaction between Abi-1 and βPIX using the yeast two-hybrid system, in vitro pull-down assays, and in vivo co-immunoprecipitation experiments. In vitro, the C-terminal fragment of βPIX interacted with Abi-1, while in vivo the N-terminal fragment of βPIX interacted with Abi-1. The biological function of this interaction was investigated in mouse fibroblasts in response to PDGF stimulation. Abi-1 and βPIX co-localised in the cytoplasm and to membrane dorsal ruffles after PDGF treatment. We show that the co-expression of Abi-1 and truncated forms of βPIX in mouse fibroblasts blocked PDGF-induced membrane dorsal ruffles. Together, these results show that the interaction between Abi-1 and βPIX is involved in the formation of growth factor-induced membrane dorsal ruffles. 展开更多
关键词 βpix Abi- 1 PDGF membrane dorsal ruffling CYTOSKELETON
在线阅读 下载PDF
Extracellular CIRP dysregulates macrophage bacterial phagocytosis in sepsis 被引量:4
2
作者 Mian Zhou Monowar Aziz +3 位作者 Hao-Ting Yen Gaifeng Ma Atsushi Murao Ping Wang 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2023年第1期80-93,共14页
In sepsis, macrophage bacterial phagocytosis is impaired, but the mechanism is not well elucidated. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that causes inflamm... In sepsis, macrophage bacterial phagocytosis is impaired, but the mechanism is not well elucidated. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that causes inflammation. However, whether eCIRP regulates macrophage bacterial phagocytosis is unknown. Here, we reported that the bacterial loads in the blood and peritoneal fluid were decreased in CIRP^(−/−) mice and anti-eCIRP Ab-treated mice after sepsis. Increased eCIRP levels were correlated with decreased bacterial clearance in septic mice. CIRP−/− mice showed a marked increase in survival after sepsis. Recombinant murine CIRP (rmCIRP) significantly decreased the phagocytosis of bacteria by macrophages in vivo and in vitro. rmCIRP decreased the protein expression of actin-binding proteins, ARP2, and p-cofilin in macrophages. rmCIRP significantly downregulated the protein expression of βPIX, a Rac1 activator. We further demonstrated that STAT3 and βPIX formed a complex following rmCIRP treatment, preventing βPIX from activating Rac1. We also found that eCIRP-induced STAT3 phosphorylation was required for eCIRP’s action in actin remodeling. Inhibition of STAT3 phosphorylation prevented the formation of the STAT3-βPIX complex, restoring ARP2 and p-cofilin expression and membrane protrusion in rmCIRP-treated macrophages. The STAT3 inhibitor stattic rescued the macrophage phagocytic dysfunction induced by rmCIRP. Thus, we identified a novel mechanism of macrophage phagocytic dysfunction caused by eCIRP, which provides a new therapeutic target to ameliorate sepsis. 展开更多
关键词 βpix eCIRP MACROPHAGE PHAGOCYTOSIS RAC1 STAT3
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部