The purposes of this research were to synthesize and characterize star-shaped poly lactide-co-glycolide-β-cyclo-dextrin (PLGA-β-CD) copolymer by reacting L-lactide, glycolide and β-cyclodextrin in the presence of s...The purposes of this research were to synthesize and characterize star-shaped poly lactide-co-glycolide-β-cyclo-dextrin (PLGA-β-CD) copolymer by reacting L-lactide, glycolide and β-cyclodextrin in the presence of stannous octoate as a catalyst. The structure of PLGA-β-CD copolymer was confirmed with 1H-NMR, 13C-NMR and FT-IR spectra. Albumin as a model peptide drug was encapsulated within nanoparticles made of PLGA-β-CD with a modified double emulsion method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the nanoparticles have the mean diameter within the range of 80 - 210 nm. Also they were almost spherical in shape. Effects of the experimental parameters, such as copolymer composition, copolymer concentration, and reaction temperature, on particular size and encapsulation efficiency were investigated.展开更多
文摘The purposes of this research were to synthesize and characterize star-shaped poly lactide-co-glycolide-β-cyclo-dextrin (PLGA-β-CD) copolymer by reacting L-lactide, glycolide and β-cyclodextrin in the presence of stannous octoate as a catalyst. The structure of PLGA-β-CD copolymer was confirmed with 1H-NMR, 13C-NMR and FT-IR spectra. Albumin as a model peptide drug was encapsulated within nanoparticles made of PLGA-β-CD with a modified double emulsion method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the nanoparticles have the mean diameter within the range of 80 - 210 nm. Also they were almost spherical in shape. Effects of the experimental parameters, such as copolymer composition, copolymer concentration, and reaction temperature, on particular size and encapsulation efficiency were investigated.