Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the...The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the further development of magnetic properties.Currently,the primary debates re-garding the mechanism of GBDP with Tb revolve around the dissolution-solidification mechanism and the atomic substitution mechanism.To clarify this mechanism,the microstructure evolution of sintered Nd-Fe-B magnets during the heating process of GBDP has been systematically studied by quenching at different tem peratures.In this study,it was found that the formation of TbFe_(2) phase is related to the dis-solution of _(2)Fe_(14)B grains during GBDP with Tb.The theory of mixing heat and phase separation further confirms that the Nd_(2)Fe_(14)B phase dissolves to form a mixed phase of Nd and TbFe_(2),which then solidifies into the(Nd,Tb)_(2)Fe_(14)B phase.Based on the discovery of the TbFe_(2) phase,the dissolution-solidification mechanism is considered the primary mechanism for GBDP.This is supported by the elemental content of the two typical core-shell structures observed.展开更多
LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific dopin...LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific doping process and existing form of W are still not perfect.This study proposes a lithium-induced grain boundary phase W doping mechanism.The results demonstrate that the introduced W atomsfirst react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles.With the increase of lithium ratio,W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping.The feasibility of grain boundary phase doping is verified byfirst principles calculation.Furthermore,it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor,which can protect the cathode surface and improve the rate performance.The doped W can alleviate the harmful H2↔H3 phase transition,thereby inhibiting the generation of microcracks,and improving the electrochemical performance.Consequently,the 0.3 wt%W-doped sample provides a significant improved capacity retention of 88.5%compared with the pristine LNO(80.7%)after 100 cycles at 2.8–4.3 V under 1C.展开更多
Cr_(2)AlC,a representative MAX phase,gains increasing attention for the excellent oxidation tolerance and corrosion resistance used in harsh high temperature and strong radiation environments.However,the lack of the p...Cr_(2)AlC,a representative MAX phase,gains increasing attention for the excellent oxidation tolerance and corrosion resistance used in harsh high temperature and strong radiation environments.However,the lack of the phase formation mechanism has become the key bottleneck to the practical applications for Cr_(2)AlC synthesis with high purity at low temperatures.In this work,we fabricated the amorphous Cr-Al-C coating by a hybrid magnetron sputtering/cathodic arc deposition technique,in which the in-situ heating transmission electron microscopy(TEM)was conducted in a temperature range of 25-650℃ to address the real-time phase transformation for Cr_(2)AlC coating.The results demonstrated that increas-ing the temperature from 25 to 370℃ led to the structural transformation from amorphous Cr-Al-C to the crystalline Cr_(2)Al interphases.However,the high-purity Cr_(2)AlC MAX phase was distinctly formed at 500℃,accompanied by the diminished amorphous feature.With the further increase of temperature to 650℃,the decomposition of Cr_(2)AlC to Cr_(7)C_(3)impurities was observed.Similar phase evolution was also evidenced by the Ab-initio molecular dynamics calculations,where the bond energy of Cr-Cr,Cr-Al,and Cr-C played the key role in the formed crystalline stability during the heating process.The observa-tions not only provide fundamental insight into the phase formation mechanism for high-purity Cr_(2)AlC coatings but also offer a promising strategy to manipulate the advanced MAX phase materials with high tolerance to high-temperature oxidation and heavy ion radiations.展开更多
Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It ...Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It exhibits negligible interlayer electronic coupling and significant excitonic behavior in the bulk state.Here we substantiate that NbOCl_(2) nanosheets can be exfoliated and effectively size-selected using controlled centrifugation techniques by the liquid phase exfoliation(LPE)method.Spectroscopic measurements displayed that the variations in dispersion were highly dependent on the nanosheet dimensions.The nanosheets seemed to be comparatively defect-free which will be further corroborated by high resolution transmission electron microscopy(HRTEM)and Raman analysis.The size selected nanosheets are unanticipated stable in isopropyl alcohol(IPA),possibly owing to the protective influence of a solvation shell.Additionally,the photothermal conversion response and photothermal stability of nanosized NbOCl_(2) were investigated.Our finding revealed that NbOCl_(2) possesses a robust photothermal agent property,boasting a photothermal conversion efficiency of more than 30%.This underscores its promising potential for various photothermal applications in different fields such as photothermal therapy and thermal energy conversion.展开更多
The structural phase transition of MnO_(2) nanorods was investigated using in situ high pressure synchrotron x-ray diffraction(XRD) and transmission electron microscopy(TEM). At pressures exceeding 10.9 GPa, a second-...The structural phase transition of MnO_(2) nanorods was investigated using in situ high pressure synchrotron x-ray diffraction(XRD) and transmission electron microscopy(TEM). At pressures exceeding 10.9 GPa, a second-order structural phase transition from tetragonal to orthogonal, which was accompanied by fine-scale crystal twinning phenomena, was observed in MnO_(2) nanorods. On account of the significant contribution of surface energy, the phase transition pressure exhibited appreciable hysteresis compared with the bulk counterparts, suggesting the enhanced structural stability of nanorod morphology. These findings reveal that the size and morphology exhibit a manifest correlation with the high pressure behavior of MnO_(2) nanomaterials, providing useful insights into the intricate interplay between structure and properties.展开更多
Aqueous iron-ion batteries are regarded as one of the most promising candidates for grid applications owing to their low cost,high theoretical capacity,and excellent stability of iron in aqueous electrolytes.However,t...Aqueous iron-ion batteries are regarded as one of the most promising candidates for grid applications owing to their low cost,high theoretical capacity,and excellent stability of iron in aqueous electrolytes.However,the slow Fe(de)insertion caused by the high polarity of Fe^(2+)makes it difficult to match suitable cathode materials.Herein,defect-rich MoS_(2)with abundant 1T phase is synthesized and successfully applied in aqueous iron-ion batteries.Benefit from abundant active sites generated by the heteroatom incorporation and S vacancy,as well as the highly conductive 1T phase,it can deliver a specific capacity of 123 mAh/g at a current density of 100mA/g,and demonstrates an impressive capacity retention of 88%after 600 cycles at 200mA/g.This work presents a novel pathway for the advancement of cathode materials for aqueous iron-ion batteries.展开更多
The photovoltaic properties of indium–gallium–zinc oxide(IGZO)thin film utilized in electronic information applications depend on the quality and performance of the corresponding target.In this study,high-energy bal...The photovoltaic properties of indium–gallium–zinc oxide(IGZO)thin film utilized in electronic information applications depend on the quality and performance of the corresponding target.In this study,high-energy ball milling was combined with atmospheric sintering to achieve precise control over the phase composition and microstructure of In_(2)Ga_(2)ZnO_(7) ceramic targets.This was achieved by controlling the sintering process and performing thermodynamic calculations to analyze the phase transition process.Further,the electronic structure simulation results of the relevant phases were analyzed,and crystal structure models were constructed.According to the density functional theory calculations,the enthalpy of formation of In_(2)Ga_(2)ZnO_(7) was found to be the largest,followed by those of InGaZnO_(4) and ZnGa_(2)O_(4),which indicates that the In_(2)Ga_(2)ZnO_(7) phase exhibits the highest thermal stability.The relationship of the enthalpy of formation corresponds to two distinct reactions of the IGZO powders.The ZnGa_(2)O_(4) phase is initially formed and remains stable for an extended period.This is followed by the rapid formation and subsequent disappearance of the InGaZnO_(4) phase within a narrow temperature range.Finally,a single In_(2)Ga_(2)ZnO_(7) phase is formed.The target sintered at 1500℃ exhibits a narrow band gap and the lowest porosity,which results in the highest relative density(99.52%)and the lowest resistivity(3.4 mΩ·cm).These experimental findings can provide guidelines for controlling the phase and microstructural characteristics of In_(2)Ga_(2)ZnO_(7) targets with the aim of producing IGZO targets with excellent properties,including homogeneous composition,high density,and low resistance in the field of flat displays.展开更多
Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects o...Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects offer new possibilities.Here,we present a comprehensive investigation of the thermoelectric properties of 1T-TiSe_(2),focusing on these effects around the charge density wave transition(≈200 K).The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450μVK^(-1) at 184 K,surpassing the Seebeck coefficient.Furthermore,1T-TiSe_(2) exhibits a remarkably broad temperature range(170-400 K)with a Thomson coefficient exceeding 190μV K^(-1),a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges.Additionally,the Nernst coefficient exhibits an unusual temperature dependence,increasing with temperature in the normal phase,which we attribute to bipolar conduction effects.The combination of solid-solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range.展开更多
Thermodynamic optimization of the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems was performed within the framework of phase diagrams calculation.The model parameters were optimized based on experimental data an...Thermodynamic optimization of the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems was performed within the framework of phase diagrams calculation.The model parameters were optimized based on experimental data and theoretically calculated values.The results show that the thermodynamically calculated values for the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems agree well with the experimental data.Next,a set of reliable and self-consistent thermodynamic databases was built,and the liquidus projections and invariant points of the sub-ternary systems of the KF-RbF-CsF-BeF_(2)system were calculated.Furthermore,the melting temperature with the corresponding composition was predicted using the phase diagrams calculation technique,and the radial distribution functions,coordination numbers,angular distribution functions,and diffusion coefficients of the quaternary KF-RbF-CsF-BeF_(2)system were calculated using ab initio molecular dynamics.The results show that the quaternary KF-RbF-CsF-BeF_(2)system with the proportion 3.50-28.92-21.78-45.80 mol%or 1.80-35.42-52.40-10.38 mol%is one of the most promising candidate coolants for molten salt reactors in terms of thermodynamics and kinetics.This work provides direct guidelines for the screening and optimization of molten salts in the nuclear energy field.展开更多
The mechanical properties of Mg–Al–Ca alloys are significantly affected by their Laves phases,including the Al_(2)Ca phase.Laves phases are generally considered to be brittle and have a detrimental effect on the duc...The mechanical properties of Mg–Al–Ca alloys are significantly affected by their Laves phases,including the Al_(2)Ca phase.Laves phases are generally considered to be brittle and have a detrimental effect on the ductility of Mg.Recently,the Al_(2)Ca phase was shown to undergo plastic deformation in a dilute Mg-Al-Ca alloy to increase the ductility and work hardening of the alloy.In the present study,we investigated the extent to which the deformation of Al_(2)Ca is driven by dislocations in the Mg matrix by simulating the interactions between the basal edge dislocations and Al_(2)Ca particles.In particular,the effects of the interparticle spacing,particle orientation,and particle size were considered.Shearing of small particles and dislocation cross-slips near large particles were observed.Both events contribute to strengthening,and accommodate to plasticity.The shear resistance of the dislocation to bypass the particles increased as the particle size increased.The critical resolved shear stress(CRSS)for activating dislocations and stacking faults was easier to reach for small Al_(2)Ca particles owing to the higher local shear stress,which is consistent with the experimental observations.Overall,this work elucidates the driving force for Al_(2)Ca particles in Mg–Al–Ca alloys to undergo plastic deformation.展开更多
Mg_(2)V_(2)O_(7)is the most promising candidate for low-temperature co-fired ceramic(LTCC)multilayer devices.Selecting the appropriate precursors strongly requires reliable thermodynamic properties to be defined accur...Mg_(2)V_(2)O_(7)is the most promising candidate for low-temperature co-fired ceramic(LTCC)multilayer devices.Selecting the appropriate precursors strongly requires reliable thermodynamic properties to be defined accurately.In this study,the structural parameters of the Mg_(2)V_(2)O_(7)at ambient temperature indicate that it is crystallized in space group of P2_(1)/c.Notably,Mg_(2)V_(2)O_(7)has low lattice thermal conductivity(k_(L))of 4.77,5.12,and 4.52 W/m K,along the a,b,and c axes,respectively,which originates from the large phonon scattering rate and low phonon group velocity.The α-Mg_(2)V_(2)O_(7)←→β-Mg_(2)V_(2)O_(7) and β-Mg_(2)V_(2)O_(7)←→γ-Mg_(2)V_(2)O_(7)polymorphic transitions occur at 743℃and 908℃with enthalpy change of 1.82±0.04 kJ/mol and 1.51±0.04 kJ/mol,respectively.The endothermic effect at 1083℃ with an enthalpy change of 26.54±0.26 kJ/mol is related to the congruent melting of γ-Mg_(2)V_(2)O_(7).In addition,the molar heat capacity of Mg_(2)V_(2)O_(7) was measured utilizing drop calorimetry at high temperatures.The measured thermodynamic properties were then applied to select precursors for preparing Mg_(2)V_(2)O_(7)via a solid-state reaction,indicating that the V_(2)O_5 and Mg(OH)_(2) precursors are strongly recommended due to their thermodynamic superiority.展开更多
The copper-cerium catalysts demonstrate high efficiency in CO_(2)reduction reactions(CO_(2)RR).However,the mechanism governing the formation of C_(2)H_(4)and CH_(4)by regulating Cu bulk phase structure at the copper-c...The copper-cerium catalysts demonstrate high efficiency in CO_(2)reduction reactions(CO_(2)RR).However,the mechanism governing the formation of C_(2)H_(4)and CH_(4)by regulating Cu bulk phase structure at the copper-cerium interface remains unclear due to the instability and dynamic evaluations of copper species.Herein,we synthesized CeO_(2)-CuO containing solely Cu^(2+)species and CeO_(2)-Cu featuring predominantly metallic Cu species at the interface,which exhibit stable structures under various potentials,offering ideal models for in-depth mechanistic studies.The C_(2)H_(4)is the main product over the CeO_(2)-CuO catalyst,exhibiting a Faradaic efficiency(FE)of 42.3%±1.4%,while CH_(4)is the primary product over the CeO_(2)-Cu catalyst,with a FE of 32.4%±1.3%.These results demonstrate that regulating bulk phase Cu structure at the copper-cerium interface influences the selectivity of hydrocarbon products.The operando ATR-SEIRAS finds that CeO_(2)-CuO surfaces with single linear*CO adsorption are advantageous for synthesizing*COCO,whereas bridge-bonded*CO adsorption promoted*CHO formation.Furthermore,DFT simulations demonstrate that the energy barrier of CO-CO coupling(C_(2)H_(4)pathway)at the CeO_(2)-CuO interface decreases as compared to the CeO_(2)-Cu catalyst,thus indicating a facilitated conversion of the CO_(2)to C_(2)H_(4).This research deepens the mechanistic understanding of the copper-cerium system during CO_(2)RR and effectively formulates a strategy for developing high-selectivity catalysts.展开更多
The Wadsley-Roth phase TiNb_(2)O_(7)(TNO)has been identified as a promising anode material with potential for high safety and fast-charging lithium-ion batteries(LIBs),arising from its competitive theoretical specific...The Wadsley-Roth phase TiNb_(2)O_(7)(TNO)has been identified as a promising anode material with potential for high safety and fast-charging lithium-ion batteries(LIBs),arising from its competitive theoretical specific capacity and secure operational potential.Despite the significant advancements in specific capacity,fast charging,and longevity at the coin cell level,a comprehensive understanding and realization of the fast-charging capability and corresponding cycling stability of the TNO under practical application conditions(such as a pouch cell with an anode capacity exceeding 2 mAh cm^(-2))continues to be elusive.In this study,we explore a simple,scalable solid-phase carbon source melt strategy to fabricate the kilogram-level micrometer-scale single-crystal TNO particles enveloped by an ultrathin carbon coating layer of<5 nm(TNO@C).The in-situ X-ray diffraction(XRD)measurement of the LiCoO_(2)‖TNO@C laminated pouch cell(anode mass loading of~10 mg cm^(-2))under fast charging/discharging conditions with the combination of material characterizations and electrochemical analysis reveals a fast,yet stable crystal structure evolution for the micrometer-scale single-crystal TNO@C with only 7.03%fluctuation in unit cell volume value,which is indicative of fast reaction kinetics.The Ah-level laminated LiCoO_(2)‖TNO@C pouch cell achieved 80.8%charge within 6 min(10 C)and retained 85.3%capacity after 1000 cycles at the charging current density of 6 C(10 min),far surpassing all the results in previous publications.The straightforward synthetic approach for the micrometer-scale single-crystal TNO@C,coupled with a clear understanding of reaction kinetics and rapid crystal structure evolution,paves the way for the practical application of the micrometer-scale single-crystal TNO@C anode material for fast charging LIBs.展开更多
The two-phase flow in porous media is affected by multiple factors.In the present study,a two-dimensional numerical model of porous media was developed using the actual pore structure of the core sample.The phase fiel...The two-phase flow in porous media is affected by multiple factors.In the present study,a two-dimensional numerical model of porous media was developed using the actual pore structure of the core sample.The phase field method was utilized to simulate the impact of displacement velocity,the water-gas viscosity ratio,and the density ratio on the flow behavior of two-phase fluids in porous media.The effectiveness of displacement was evaluated by analyzing CO_(2)saturation levels.The results indicate that the saturation of CO_(2)in porous media increased as the displacement velocity increased.When the displacement velocity exceeded 0.01 m/s,there was a corresponding increase in CO_(2)saturation.Conversely,when the displacement velocity was below this threshold,the impact on CO_(2)saturation was minimal.An“inflection point,”M3,was present in the viscosity ratio.When the viscosity of CO_(2)is less than 8.937×10^(-5)Pa·s(viscosity ratio below M3),variations in the viscosity of CO_(2)had little impact on its saturation.Conversely,when the viscosity of CO_(2)exceeded 8.937×10^(-5)Pa·s(viscosity ratio greater than M3),saturation increased with an increase in the viscosity ratio.In terms of the density ratio,the saturation of CO_(2)increased monotonically with an increase in the density ratio.Similarly,increasing density ratios resulted in a monotonic increase in CO_(2)saturation,though this trend was less pronounced in numerical simulations.Analysis results of displacement within dead-end pores using pressure and velocity diagrams reveal eddy currents as contributing factors.Finally,the impact of pore throat structure on the formation of dominant channels was examined.展开更多
The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification pro...The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification process of the Al—2Sc alloy controlled by a novel PMS using NdFeB permanent magnets under various rotation speeds(0,50,100 and 150 r/min).The simulated results reveal that the maximum electromagnetic force increases proportionally from 4.14 to 12.39 kN/m^(3)and the maximum tangential velocity increases from 0.13 to 0.36 m/s when the rotation speed of PMS enhances from 50 to 150 r/min in the ingot melt.Besides,the experimental results demonstrate that PMS can achieve a uniform distribution of blocky Al_(3)Sc precipitated phase in the longitudinal direction under the impact of a forced fluid flow.Moreover,increasing rotation speed of PMS is beneficial to refining aluminum grain size significantly and decreasing the texture intensity in the alloy.In addition,the Brinell hardness of Al-2Sc alloy is increased by 33%to 27.8 HB and the tensile strength is enhanced by 34%-128.2 MPa,due to the improved distribution of the strengthening Al_(3)SC phase and the grain refinement of Al matrix under the impact of PMS.This work provides an effective application of NdFeB permanent magnets in the metal cast field.展开更多
The mechanical,thermodynamic properties and electrical conductivities of L1_(2)-Al_(3)X(X=Zr,Sc,Er,Yb,Hf)structural phases in aluminum conductors were investigated through a first-principles study.The results demonstr...The mechanical,thermodynamic properties and electrical conductivities of L1_(2)-Al_(3)X(X=Zr,Sc,Er,Yb,Hf)structural phases in aluminum conductors were investigated through a first-principles study.The results demonstrate that all structural phases have good alloy-forming ability and structural stability,where Al_(3)Zr is the most superior.Al_(3)Zr,Al_(3)Hf and Al_(3)Sc have enhanced shear and deformation resistance in comparison to other phases.Within the temperature range of 200−600 K,Al_(3)Er and Al_(3)Yb possess the greatest thermodynamic stability,followed by Al_(3)Hf,Al_(3)Zr and Al_(3)Sc.Al_(3)Er and Al_(3)Yb have higher thermodynamic stability than Al_(3)Hf,Al_(3)Zr and Al_(3)Sc.All structural phases exhibit substantial metallic properties,indicating their good electrical conductivity.The electrical conductivities of Al_(3)Hf and Al_(3)Zr are higher than those of Al_(3)Er,Al_(3)Yb and Al_(3)Sc.The covalent bond properties in Al_(3)Sc,Al_(3)Er and Al_(3)Yb enhance the hardness,brittleness and thermodynamic stability of the structural phase.The thermodynamic stability of Al_(3)Sc is significantly reduced by ionic bonds.展开更多
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the National Key Research and Development Program of China(2022YFB3505503)the National Natural Science Foundation of China(52201230)+2 种基金the Key R&D Program of Shandong Province(2022CXGC020307)the China Postdoctoral Science Foundation(2022M71204)the Beijing NOVA Program(Z211100002121092).
文摘The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the further development of magnetic properties.Currently,the primary debates re-garding the mechanism of GBDP with Tb revolve around the dissolution-solidification mechanism and the atomic substitution mechanism.To clarify this mechanism,the microstructure evolution of sintered Nd-Fe-B magnets during the heating process of GBDP has been systematically studied by quenching at different tem peratures.In this study,it was found that the formation of TbFe_(2) phase is related to the dis-solution of _(2)Fe_(14)B grains during GBDP with Tb.The theory of mixing heat and phase separation further confirms that the Nd_(2)Fe_(14)B phase dissolves to form a mixed phase of Nd and TbFe_(2),which then solidifies into the(Nd,Tb)_(2)Fe_(14)B phase.Based on the discovery of the TbFe_(2) phase,the dissolution-solidification mechanism is considered the primary mechanism for GBDP.This is supported by the elemental content of the two typical core-shell structures observed.
基金supported by the National Natural Science Foundation of China(No.52122407,No.52174285,52404317)the Science and Technology Innovation Program of Hunan Province(No.2022RC3048).
文摘LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific doping process and existing form of W are still not perfect.This study proposes a lithium-induced grain boundary phase W doping mechanism.The results demonstrate that the introduced W atomsfirst react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles.With the increase of lithium ratio,W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping.The feasibility of grain boundary phase doping is verified byfirst principles calculation.Furthermore,it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor,which can protect the cathode surface and improve the rate performance.The doped W can alleviate the harmful H2↔H3 phase transition,thereby inhibiting the generation of microcracks,and improving the electrochemical performance.Consequently,the 0.3 wt%W-doped sample provides a significant improved capacity retention of 88.5%compared with the pristine LNO(80.7%)after 100 cycles at 2.8–4.3 V under 1C.
基金supported by the financial support of the National Science Fund for Distinguished Young Scholars of China(No.52025014)the National Natural Science Foundation of China(Nos.52101109 and 52171090)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LD24E010003 and LZJWY23E090001)the Natural Science Foundation of Ningbo(Nos.2023J410).
文摘Cr_(2)AlC,a representative MAX phase,gains increasing attention for the excellent oxidation tolerance and corrosion resistance used in harsh high temperature and strong radiation environments.However,the lack of the phase formation mechanism has become the key bottleneck to the practical applications for Cr_(2)AlC synthesis with high purity at low temperatures.In this work,we fabricated the amorphous Cr-Al-C coating by a hybrid magnetron sputtering/cathodic arc deposition technique,in which the in-situ heating transmission electron microscopy(TEM)was conducted in a temperature range of 25-650℃ to address the real-time phase transformation for Cr_(2)AlC coating.The results demonstrated that increas-ing the temperature from 25 to 370℃ led to the structural transformation from amorphous Cr-Al-C to the crystalline Cr_(2)Al interphases.However,the high-purity Cr_(2)AlC MAX phase was distinctly formed at 500℃,accompanied by the diminished amorphous feature.With the further increase of temperature to 650℃,the decomposition of Cr_(2)AlC to Cr_(7)C_(3)impurities was observed.Similar phase evolution was also evidenced by the Ab-initio molecular dynamics calculations,where the bond energy of Cr-Cr,Cr-Al,and Cr-C played the key role in the formed crystalline stability during the heating process.The observa-tions not only provide fundamental insight into the phase formation mechanism for high-purity Cr_(2)AlC coatings but also offer a promising strategy to manipulate the advanced MAX phase materials with high tolerance to high-temperature oxidation and heavy ion radiations.
基金Projects(62275275,11904239)supported by the National Natural Science Foundation of ChinaProjects(2021JJ40709,2022JJ20080)supported by the Natural Science Foundation of Hunan Province,China。
文摘Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It exhibits negligible interlayer electronic coupling and significant excitonic behavior in the bulk state.Here we substantiate that NbOCl_(2) nanosheets can be exfoliated and effectively size-selected using controlled centrifugation techniques by the liquid phase exfoliation(LPE)method.Spectroscopic measurements displayed that the variations in dispersion were highly dependent on the nanosheet dimensions.The nanosheets seemed to be comparatively defect-free which will be further corroborated by high resolution transmission electron microscopy(HRTEM)and Raman analysis.The size selected nanosheets are unanticipated stable in isopropyl alcohol(IPA),possibly owing to the protective influence of a solvation shell.Additionally,the photothermal conversion response and photothermal stability of nanosized NbOCl_(2) were investigated.Our finding revealed that NbOCl_(2) possesses a robust photothermal agent property,boasting a photothermal conversion efficiency of more than 30%.This underscores its promising potential for various photothermal applications in different fields such as photothermal therapy and thermal energy conversion.
基金Project supported by China Postdoctoral Science Foundation (Grant No. 2023M742049)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515110844)the Innovative Training Program for College Students (Grant No. 20249076)。
文摘The structural phase transition of MnO_(2) nanorods was investigated using in situ high pressure synchrotron x-ray diffraction(XRD) and transmission electron microscopy(TEM). At pressures exceeding 10.9 GPa, a second-order structural phase transition from tetragonal to orthogonal, which was accompanied by fine-scale crystal twinning phenomena, was observed in MnO_(2) nanorods. On account of the significant contribution of surface energy, the phase transition pressure exhibited appreciable hysteresis compared with the bulk counterparts, suggesting the enhanced structural stability of nanorod morphology. These findings reveal that the size and morphology exhibit a manifest correlation with the high pressure behavior of MnO_(2) nanomaterials, providing useful insights into the intricate interplay between structure and properties.
基金supported by Shenzhen Fundamental Research Program(No.GXWD20201231165807007-20200802205241003).
文摘Aqueous iron-ion batteries are regarded as one of the most promising candidates for grid applications owing to their low cost,high theoretical capacity,and excellent stability of iron in aqueous electrolytes.However,the slow Fe(de)insertion caused by the high polarity of Fe^(2+)makes it difficult to match suitable cathode materials.Herein,defect-rich MoS_(2)with abundant 1T phase is synthesized and successfully applied in aqueous iron-ion batteries.Benefit from abundant active sites generated by the heteroatom incorporation and S vacancy,as well as the highly conductive 1T phase,it can deliver a specific capacity of 123 mAh/g at a current density of 100mA/g,and demonstrates an impressive capacity retention of 88%after 600 cycles at 200mA/g.This work presents a novel pathway for the advancement of cathode materials for aqueous iron-ion batteries.
基金supported by the Natural Science Foundation of Henan Province(No.242300421221)the Project of Zhongyuan Critical Metals Laboratory(No.GJJSGFJQ202301)Henan Research Institute 2024 Strategic Consulting Research Project(No.2024 HENZDA01).
文摘The photovoltaic properties of indium–gallium–zinc oxide(IGZO)thin film utilized in electronic information applications depend on the quality and performance of the corresponding target.In this study,high-energy ball milling was combined with atmospheric sintering to achieve precise control over the phase composition and microstructure of In_(2)Ga_(2)ZnO_(7) ceramic targets.This was achieved by controlling the sintering process and performing thermodynamic calculations to analyze the phase transition process.Further,the electronic structure simulation results of the relevant phases were analyzed,and crystal structure models were constructed.According to the density functional theory calculations,the enthalpy of formation of In_(2)Ga_(2)ZnO_(7) was found to be the largest,followed by those of InGaZnO_(4) and ZnGa_(2)O_(4),which indicates that the In_(2)Ga_(2)ZnO_(7) phase exhibits the highest thermal stability.The relationship of the enthalpy of formation corresponds to two distinct reactions of the IGZO powders.The ZnGa_(2)O_(4) phase is initially formed and remains stable for an extended period.This is followed by the rapid formation and subsequent disappearance of the InGaZnO_(4) phase within a narrow temperature range.Finally,a single In_(2)Ga_(2)ZnO_(7) phase is formed.The target sintered at 1500℃ exhibits a narrow band gap and the lowest porosity,which results in the highest relative density(99.52%)and the lowest resistivity(3.4 mΩ·cm).These experimental findings can provide guidelines for controlling the phase and microstructural characteristics of In_(2)Ga_(2)ZnO_(7) targets with the aim of producing IGZO targets with excellent properties,including homogeneous composition,high density,and low resistance in the field of flat displays.
基金S.A.and M.Z.acknowledge support by NSF,grant number 2230352S.S.D.acknowledges support from the UVA Research Innovation AwardK.S.D.and D.L.work on TMDs has been supported by National Science Foundation Grant No.221949.
文摘Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects offer new possibilities.Here,we present a comprehensive investigation of the thermoelectric properties of 1T-TiSe_(2),focusing on these effects around the charge density wave transition(≈200 K).The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450μVK^(-1) at 184 K,surpassing the Seebeck coefficient.Furthermore,1T-TiSe_(2) exhibits a remarkably broad temperature range(170-400 K)with a Thomson coefficient exceeding 190μV K^(-1),a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges.Additionally,the Nernst coefficient exhibits an unusual temperature dependence,increasing with temperature in the normal phase,which we attribute to bipolar conduction effects.The combination of solid-solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range.
基金supported by the National Natural Science Foundation of China(Nos.12205364 and 12375282)Guangdong Provincial Natural Science Foundation(Nos.2024A1515012570 and 2024A1515010885)the Fundamental Research funds for the Central Universities,Sun Yat sen University。
文摘Thermodynamic optimization of the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems was performed within the framework of phase diagrams calculation.The model parameters were optimized based on experimental data and theoretically calculated values.The results show that the thermodynamically calculated values for the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems agree well with the experimental data.Next,a set of reliable and self-consistent thermodynamic databases was built,and the liquidus projections and invariant points of the sub-ternary systems of the KF-RbF-CsF-BeF_(2)system were calculated.Furthermore,the melting temperature with the corresponding composition was predicted using the phase diagrams calculation technique,and the radial distribution functions,coordination numbers,angular distribution functions,and diffusion coefficients of the quaternary KF-RbF-CsF-BeF_(2)system were calculated using ab initio molecular dynamics.The results show that the quaternary KF-RbF-CsF-BeF_(2)system with the proportion 3.50-28.92-21.78-45.80 mol%or 1.80-35.42-52.40-10.38 mol%is one of the most promising candidate coolants for molten salt reactors in terms of thermodynamics and kinetics.This work provides direct guidelines for the screening and optimization of molten salts in the nuclear energy field.
基金funded by the National Natural Science Foundation of China(nos.51631006 and 51825101)。
文摘The mechanical properties of Mg–Al–Ca alloys are significantly affected by their Laves phases,including the Al_(2)Ca phase.Laves phases are generally considered to be brittle and have a detrimental effect on the ductility of Mg.Recently,the Al_(2)Ca phase was shown to undergo plastic deformation in a dilute Mg-Al-Ca alloy to increase the ductility and work hardening of the alloy.In the present study,we investigated the extent to which the deformation of Al_(2)Ca is driven by dislocations in the Mg matrix by simulating the interactions between the basal edge dislocations and Al_(2)Ca particles.In particular,the effects of the interparticle spacing,particle orientation,and particle size were considered.Shearing of small particles and dislocation cross-slips near large particles were observed.Both events contribute to strengthening,and accommodate to plasticity.The shear resistance of the dislocation to bypass the particles increased as the particle size increased.The critical resolved shear stress(CRSS)for activating dislocations and stacking faults was easier to reach for small Al_(2)Ca particles owing to the higher local shear stress,which is consistent with the experimental observations.Overall,this work elucidates the driving force for Al_(2)Ca particles in Mg–Al–Ca alloys to undergo plastic deformation.
基金supported by the National Key Research and Development Program of China(No.2022YFC3901001-1)the National Natural Science Foundation of China(Grant No.U1902217)financial support from the Chinese Scholarship Council(CSC No.202106050084)。
文摘Mg_(2)V_(2)O_(7)is the most promising candidate for low-temperature co-fired ceramic(LTCC)multilayer devices.Selecting the appropriate precursors strongly requires reliable thermodynamic properties to be defined accurately.In this study,the structural parameters of the Mg_(2)V_(2)O_(7)at ambient temperature indicate that it is crystallized in space group of P2_(1)/c.Notably,Mg_(2)V_(2)O_(7)has low lattice thermal conductivity(k_(L))of 4.77,5.12,and 4.52 W/m K,along the a,b,and c axes,respectively,which originates from the large phonon scattering rate and low phonon group velocity.The α-Mg_(2)V_(2)O_(7)←→β-Mg_(2)V_(2)O_(7) and β-Mg_(2)V_(2)O_(7)←→γ-Mg_(2)V_(2)O_(7)polymorphic transitions occur at 743℃and 908℃with enthalpy change of 1.82±0.04 kJ/mol and 1.51±0.04 kJ/mol,respectively.The endothermic effect at 1083℃ with an enthalpy change of 26.54±0.26 kJ/mol is related to the congruent melting of γ-Mg_(2)V_(2)O_(7).In addition,the molar heat capacity of Mg_(2)V_(2)O_(7) was measured utilizing drop calorimetry at high temperatures.The measured thermodynamic properties were then applied to select precursors for preparing Mg_(2)V_(2)O_(7)via a solid-state reaction,indicating that the V_(2)O_5 and Mg(OH)_(2) precursors are strongly recommended due to their thermodynamic superiority.
基金supported financially by the National Natural Science Foundation of China (22302222, 22072172)the Postdoctoral Science Foundation (2024T170965, 2023M743641)+5 种基金the Youth Innovation Promotion Association CAS (Y2021056)Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022007)the Major Science and Technology Projects of Shanxi Province (202005D121002)the Special Fund for Science and Technology Innovation Teams of Shanxi Province (202304051001007)the Science and Technology Department of Shanxi Province (202303021222409)the Shanxi Provincial Department of Human and Social Resources Security’s Doctor Introduction Program (2024SHB001)
文摘The copper-cerium catalysts demonstrate high efficiency in CO_(2)reduction reactions(CO_(2)RR).However,the mechanism governing the formation of C_(2)H_(4)and CH_(4)by regulating Cu bulk phase structure at the copper-cerium interface remains unclear due to the instability and dynamic evaluations of copper species.Herein,we synthesized CeO_(2)-CuO containing solely Cu^(2+)species and CeO_(2)-Cu featuring predominantly metallic Cu species at the interface,which exhibit stable structures under various potentials,offering ideal models for in-depth mechanistic studies.The C_(2)H_(4)is the main product over the CeO_(2)-CuO catalyst,exhibiting a Faradaic efficiency(FE)of 42.3%±1.4%,while CH_(4)is the primary product over the CeO_(2)-Cu catalyst,with a FE of 32.4%±1.3%.These results demonstrate that regulating bulk phase Cu structure at the copper-cerium interface influences the selectivity of hydrocarbon products.The operando ATR-SEIRAS finds that CeO_(2)-CuO surfaces with single linear*CO adsorption are advantageous for synthesizing*COCO,whereas bridge-bonded*CO adsorption promoted*CHO formation.Furthermore,DFT simulations demonstrate that the energy barrier of CO-CO coupling(C_(2)H_(4)pathway)at the CeO_(2)-CuO interface decreases as compared to the CeO_(2)-Cu catalyst,thus indicating a facilitated conversion of the CO_(2)to C_(2)H_(4).This research deepens the mechanistic understanding of the copper-cerium system during CO_(2)RR and effectively formulates a strategy for developing high-selectivity catalysts.
基金support of the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20240240)the China Postdoctoral Science Foundation(No.2024M751001)。
文摘The Wadsley-Roth phase TiNb_(2)O_(7)(TNO)has been identified as a promising anode material with potential for high safety and fast-charging lithium-ion batteries(LIBs),arising from its competitive theoretical specific capacity and secure operational potential.Despite the significant advancements in specific capacity,fast charging,and longevity at the coin cell level,a comprehensive understanding and realization of the fast-charging capability and corresponding cycling stability of the TNO under practical application conditions(such as a pouch cell with an anode capacity exceeding 2 mAh cm^(-2))continues to be elusive.In this study,we explore a simple,scalable solid-phase carbon source melt strategy to fabricate the kilogram-level micrometer-scale single-crystal TNO particles enveloped by an ultrathin carbon coating layer of<5 nm(TNO@C).The in-situ X-ray diffraction(XRD)measurement of the LiCoO_(2)‖TNO@C laminated pouch cell(anode mass loading of~10 mg cm^(-2))under fast charging/discharging conditions with the combination of material characterizations and electrochemical analysis reveals a fast,yet stable crystal structure evolution for the micrometer-scale single-crystal TNO@C with only 7.03%fluctuation in unit cell volume value,which is indicative of fast reaction kinetics.The Ah-level laminated LiCoO_(2)‖TNO@C pouch cell achieved 80.8%charge within 6 min(10 C)and retained 85.3%capacity after 1000 cycles at the charging current density of 6 C(10 min),far surpassing all the results in previous publications.The straightforward synthetic approach for the micrometer-scale single-crystal TNO@C,coupled with a clear understanding of reaction kinetics and rapid crystal structure evolution,paves the way for the practical application of the micrometer-scale single-crystal TNO@C anode material for fast charging LIBs.
基金National Science Foundation of China,Grant/Award Number:5227090113Shenzhen Science and Technology Program,Grant/Award Numbers:KCXFZ20230731093901003,KCXFZ20211020163816023The Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone,Grant/Award Number:HZQB-KCZYB-2020083。
文摘The two-phase flow in porous media is affected by multiple factors.In the present study,a two-dimensional numerical model of porous media was developed using the actual pore structure of the core sample.The phase field method was utilized to simulate the impact of displacement velocity,the water-gas viscosity ratio,and the density ratio on the flow behavior of two-phase fluids in porous media.The effectiveness of displacement was evaluated by analyzing CO_(2)saturation levels.The results indicate that the saturation of CO_(2)in porous media increased as the displacement velocity increased.When the displacement velocity exceeded 0.01 m/s,there was a corresponding increase in CO_(2)saturation.Conversely,when the displacement velocity was below this threshold,the impact on CO_(2)saturation was minimal.An“inflection point,”M3,was present in the viscosity ratio.When the viscosity of CO_(2)is less than 8.937×10^(-5)Pa·s(viscosity ratio below M3),variations in the viscosity of CO_(2)had little impact on its saturation.Conversely,when the viscosity of CO_(2)exceeded 8.937×10^(-5)Pa·s(viscosity ratio greater than M3),saturation increased with an increase in the viscosity ratio.In terms of the density ratio,the saturation of CO_(2)increased monotonically with an increase in the density ratio.Similarly,increasing density ratios resulted in a monotonic increase in CO_(2)saturation,though this trend was less pronounced in numerical simulations.Analysis results of displacement within dead-end pores using pressure and velocity diagrams reveal eddy currents as contributing factors.Finally,the impact of pore throat structure on the formation of dominant channels was examined.
基金Project supported by the Natural Science Foundation of Hunan Province(2024JJ4056)the Key Project of Guangxi Zhuang Autonomous Region(AB22080089)the Government of Chongzuo,Guangxi Zhuang Autonomous Region(FA20210716)。
文摘The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification process of the Al—2Sc alloy controlled by a novel PMS using NdFeB permanent magnets under various rotation speeds(0,50,100 and 150 r/min).The simulated results reveal that the maximum electromagnetic force increases proportionally from 4.14 to 12.39 kN/m^(3)and the maximum tangential velocity increases from 0.13 to 0.36 m/s when the rotation speed of PMS enhances from 50 to 150 r/min in the ingot melt.Besides,the experimental results demonstrate that PMS can achieve a uniform distribution of blocky Al_(3)Sc precipitated phase in the longitudinal direction under the impact of a forced fluid flow.Moreover,increasing rotation speed of PMS is beneficial to refining aluminum grain size significantly and decreasing the texture intensity in the alloy.In addition,the Brinell hardness of Al-2Sc alloy is increased by 33%to 27.8 HB and the tensile strength is enhanced by 34%-128.2 MPa,due to the improved distribution of the strengthening Al_(3)SC phase and the grain refinement of Al matrix under the impact of PMS.This work provides an effective application of NdFeB permanent magnets in the metal cast field.
基金National Natural Science Foundation of China (No. 52274403)。
文摘The mechanical,thermodynamic properties and electrical conductivities of L1_(2)-Al_(3)X(X=Zr,Sc,Er,Yb,Hf)structural phases in aluminum conductors were investigated through a first-principles study.The results demonstrate that all structural phases have good alloy-forming ability and structural stability,where Al_(3)Zr is the most superior.Al_(3)Zr,Al_(3)Hf and Al_(3)Sc have enhanced shear and deformation resistance in comparison to other phases.Within the temperature range of 200−600 K,Al_(3)Er and Al_(3)Yb possess the greatest thermodynamic stability,followed by Al_(3)Hf,Al_(3)Zr and Al_(3)Sc.Al_(3)Er and Al_(3)Yb have higher thermodynamic stability than Al_(3)Hf,Al_(3)Zr and Al_(3)Sc.All structural phases exhibit substantial metallic properties,indicating their good electrical conductivity.The electrical conductivities of Al_(3)Hf and Al_(3)Zr are higher than those of Al_(3)Er,Al_(3)Yb and Al_(3)Sc.The covalent bond properties in Al_(3)Sc,Al_(3)Er and Al_(3)Yb enhance the hardness,brittleness and thermodynamic stability of the structural phase.The thermodynamic stability of Al_(3)Sc is significantly reduced by ionic bonds.