期刊文献+
共找到352篇文章
< 1 2 18 >
每页显示 20 50 100
Development of a high property acetone sensor based on TiO_(2) core-shell spheres and their sensing mechanism analysis
1
作者 Bao-Quan Yang Xiao-Li Cheng +7 位作者 Xin Zhao Xian-Fa Zhang Chuan-Yu Guo Li-Hua Huo Ting-Ting Wang Chao-Bo Huang Zoltán Major Ying-Ming Xu 《Rare Metals》 2025年第2期1182-1194,共13页
Acetone is a common volatile organic compound that can cause harm to human health when inhaled in small amounts.Therefore,the development of fast response and low detection limit acetone sensors becomes crucial.In thi... Acetone is a common volatile organic compound that can cause harm to human health when inhaled in small amounts.Therefore,the development of fast response and low detection limit acetone sensors becomes crucial.In this study,a core-shell spherical TiO_(2) sensor with a rich pore structure was designed.This sensor exhibited excellent sensing properties,including higher responsiveness(100 ppm acetone,R_(a)/R_(g)=80),lower detection limit(10 ppb)and short response time(8 s).The problem is that the sensing mechanism between TiO_(2) and acetone is not thoroughly analyzed.To gain further insight,the interaction process of TiO_(2) core-shell spheres and acetone under varying oxygen content environments was investigated by dynamic testing,X-ray photoelectron spectroscopy,in-situ Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry.The research results show that acetone not only adsorbs on the surface of the material and reacts with adsorbed oxygen,but also undergoes catalytic oxidation reaction with TiO_(2) core-shell spheres.Significantly,in high oxygen content environments,acetone undergoes oxidation to form intermediates such as acids and anhydrides that are difficult to desorpt on the surface of the material,thus prolonging the recovery time of the sensor.The discovery of this sensing process will provide some guidance for the design of acetone sensing materials in the future.Meanwhile,this also imparts valuable references and insights for the investigation of the mechanism and application of other sensitive metal oxide materials. 展开更多
关键词 TiO_(2)core-shell spheres ACETONE Gas sensor Mechanism CATALYSIS
原文传递
Construction of ternary structured Dy_(2)O_(3) nanorods/carbon spheres/few layered Dy_(2)WO_(6) nanohybrids for electrochemical supercapacitors
2
作者 Sethumathavan Vadivel P.Sujita 《Journal of Rare Earths》 2025年第10期2222-2230,I0006,共10页
In this work,Dy_(2)O_(3)rods and layered Dy_(2)WO_(6)heterostructure were effectively interconnected by carbon spheres named Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite with a confined interface and it was fabricated... In this work,Dy_(2)O_(3)rods and layered Dy_(2)WO_(6)heterostructure were effectively interconnected by carbon spheres named Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite with a confined interface and it was fabricated using a simple solvothermal approach.These ternary nanocomposites were investigated by X-ray diffraction(XRD),UV-visible diffuse-reflectance spectroscopy(UV-DRS),Fourier transform-infrared spectroscopy(FT-IR),Raman,field emission scanning electron microscopy(FESEM)with energy disperse spectroscopy(EDS),high-resolution transmission electron microscopy(HRTEM),and X-ray photoelectron spectroscopy(XPS)analyses systematically.The XRD data expose that the synthesized materials are formed with a virtuous crystalline state.The charge storage properties and electrochemical performances of the as-synthesized nanocomposites and pure components were assessed with the help of cyclic voltammogram(CV),galvanostatic charge-discharge studies(GCD),and electrochemical impedance studies(EIS),respectively.The rare-earth-based novel Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite as wo rking electrodes established commendable electrochemical perfo rmances with a maximum specific capacitance value of 123 F/g at a current density of 0.4 A/g in 2.0 mol/L aqueous KOH solution.According to the stability measurements,it was observed that the initial capacitance was maintained at~93%even after 2500 cycles,indicating that good electrochemical stability with the lowest internal resistance values was obtained from EIS analysis.The electrochemical measurements suggest that the Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite enables great competence and can be used as alternative electrode material in supercapacitor devices to avail high energy efficiency in a sustainable approach. 展开更多
关键词 Dy_(2)O_(3) Dy_(2)WO_(6) Rare earths Carbon spheres Composite Supercapacitors
原文传递
Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO_(2) electroreduction
3
作者 Kaining Li Yasutaka Kuwahara Hiromi Yamashita 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期66-76,共11页
Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily a... Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond. 展开更多
关键词 Hollow carbon sphere Ni nanoparticle CO_(2) reduction Electrocatalysis Single-atom catalyst
在线阅读 下载PDF
γ-MnO_(2) nanorod-assembled hierarchical micro-spheres with oxygen vacancies to enhance electrocatalytic performance toward the oxygen reduction reaction for aluminum-air batteries 被引量:4
4
作者 Ge Huo Xue-Wan Wang +6 位作者 Zhi-Bin Zhang Zhongxin Song Xiao-Min Kang Ming-Xing Chen Qi Wang Xian-Zhu Fu Jing-Li Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期81-89,共9页
γ-MnO2 nanorod-assembled hierarchical micro-spheres with abundant oxygen defects are synthesized by a simple thermal treatment approach as oxygen reduction electrocatalysts for Al(aluminum)-air batteries. The rich ox... γ-MnO2 nanorod-assembled hierarchical micro-spheres with abundant oxygen defects are synthesized by a simple thermal treatment approach as oxygen reduction electrocatalysts for Al(aluminum)-air batteries. The rich oxygen vacancies on the surface of γ-MnO2 are verified by morphology, structure,electron paramagnetic resonance(EPR) and X-ray photoelectron spectroscopy(XPS) results. The oxygen reduction reaction(ORR) electrocatalytic activity of γ-MnO2 is significantly improved by the incoming oxygen vacancies. The γ-MnO2 nanorod-assembled hierarchical micro-spheres calcined under 300 °C in Ar atmosphere show the best ORR performance. The primary Al-air batteries using γ-MnO2 catalysts as the cathode, which demonstrates excellent peal power density of 318 m W cm^(-2) when applying theγ-MnO2 catalysts with optimal amount of oxygen vacancies. 展开更多
关键词 γ-mno2 Oxygen vacancy ORR electrocatalysts Al-air battery
在线阅读 下载PDF
Low temperature molten salt synthesis of porous La_(1-x)Sr_xMn_(0.8)Fe_(0.2)O_3(0≤x≤0.6) microspheres with high catalytic activity for CO oxidation 被引量:4
5
作者 黄学辉 牛鹏举 商晓辉 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1431-1439,共9页
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt... A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation. 展开更多
关键词 Molten salt method δ-mno2 microsphere Porous spherical structure Calcination temperature Carbon monoxide oxidation
在线阅读 下载PDF
Hydrothermal Synthesis and Formation Mechanism of Micrometer-sized MoO_2 Hollow Spheres
6
作者 郭成花 张贵军 +6 位作者 沈铸睿 孙平川 袁忠勇 金庆华 李宝会 丁大同 陈铁红 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第6期543-548,共6页
Micrometer-sized MoO2 hollow spheres were synthesized hydrothermally with ammonium heptamolybdate tetrahydrate as molybdenum source, Cetyltrimethylammonium bromide as structure-directing agent and C2H5OH as reducing a... Micrometer-sized MoO2 hollow spheres were synthesized hydrothermally with ammonium heptamolybdate tetrahydrate as molybdenum source, Cetyltrimethylammonium bromide as structure-directing agent and C2H5OH as reducing agent, respectively. The products were investigated by X-ray diffraction, thermo gravimetry and differential thermal analysis, scanning electron microscopy, transmission electron micraseopy and X-ray photoelectron spectroscopy. A morphology transition of "blocks-solid spheres-hollow spheres" during the growth procfess was observed and the possible mechanism for the formation of MoO2 samples was proposed to be through a microscale Kirkendall effcct. 展开更多
关键词 MOO2 Micrometer-sized hollow spheres Cationic surfactants
在线阅读 下载PDF
V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode 被引量:18
7
作者 Fei Liu Zixian Chen +5 位作者 Guozhao Fang Ziqing Wang Yangsheng Cai Boya Tang Jiang Zhou Shuquan Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期98-108,共11页
AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nan... AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nanoflakes.The V4+-V2O5 cathode exhibits a prominent cycling performance,with a specific capacity of 140 mAhg-1 after 1000 cycles at 10 A g.1,and an excellent rate capability.The good electrochemical performance is attributed to the presence of V4+,which leads to higher electrochemical activity,lower polarization,faster ion diffusion,and higher electrical conductivity than V2O5 without V4+.This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry. 展开更多
关键词 V2O5 MIXED valences Hollow sphere Long-cycle-life AQUEOUS zinc-ion BATTERY
在线阅读 下载PDF
Preparation and performance of CeO_2 hollow spheres and nanoparticles 被引量:7
8
作者 张问问 陈东辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第3期295-299,共5页
CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM)... CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM), N_2 adsorption-desorption, X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR) and UV-vis diffuse reflectance spectra. The results showed that the structure of the obtained CeO_2 hollow spheres was hollow microsphere with a diameter of 380 nm and the average particle size of CeO_2 nanoparticles was about 1700 nm. The two samples' Brunauer-Emmett-Teller(BET) surface area was 67.1 and 37.2 m^2/g. The CeO_2 hollow spheres had a better performance than nanoparticles at UV-shielding because of higher surface area and the structure of hollow sphere. 展开更多
关键词 CEO2 UV-SHIELDING hollow spheres TEMPLATE Rh B rare earths
原文传递
Enhanced photocatalytic activity and mechanism of CeO_(2) hollow spheres for tetracycline degradation 被引量:11
9
作者 Dan Wang Fang-Xin Yin +3 位作者 Bei Cheng Yang Xia Jia-Guo Yu Wing-Kei Ho 《Rare Metals》 SCIE EI CAS CSCD 2021年第9期2369-2380,共12页
Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method fo... Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method followed by calcination at different temperatures for the tetracycline(TC) degradation under simulated solar light illumination. With a calcination temperature ranging from400 to 800 ℃, the as-prepared CeO_(2) hollow structure annealed at 600 ℃(C_(600)) exhibited the best degradation performance with a degradation rate constant of0.066 min-1, which was about six and five times higher than those of the uncalcined sample(C_(0)) and the sample calcined at 800 ℃(C_(800)), respectively. Moreover, sample C_(600)was also superior to the CeO_(2) solid particle photocatalyst. The characterisation results showed that the improved photocatalytic performance was mainly ascribed to the synergistic effect of large specific surface areas, high crystallisation and excellent light scattering ability. Furthermore, the results of active species trapping experiments demonstrated that the superoxide anion(·O_(2)^(-)) radical and hole(h^(+)) played dominant roles in TC degradation. Subsequently, the possible TC degradation pathways and photocatalytic mechanism of CeO_(2) hollow spheres were proposed on the basis of high-performance liquid chromatography–mass spectrometry analysis, main active species and band edge positions of CeO_(2). The results of this study provide a basis for designing and exploring hollow structure catalysts for energy conversion and environmental remediation. 展开更多
关键词 CeO_(2)hollow spheres Photocatalytic degradation TETRACYCLINE MECHANISM Reaction pathway
原文传递
Carbon hollow spheres as cocatalyst of Cu-doped TiO_(2)nanoparticles for improved photocatalytic H_(2)generation 被引量:9
10
作者 Li-Juan Sun Hai-Wei Su +3 位作者 Di-Fa Xu Le-Le Wang Hua Tang Qin-Qin Liu 《Rare Metals》 SCIE EI CAS CSCD 2022年第6期2063-2073,共11页
The reasonable employment of cocatalyst in photocatalysis can effectively promote the photocatalytic H_(2)production activity.In this study,carbon hollow spheres(C),as a good conductive nonmetallic material,have been ... The reasonable employment of cocatalyst in photocatalysis can effectively promote the photocatalytic H_(2)production activity.In this study,carbon hollow spheres(C),as a good conductive nonmetallic material,have been utilized as a novel cocatalyst and a matrix for loading the Cu-doped-TiO_(2)nanoparticles by a successive hydrother-mal method and metal molten salt method.The Cu-doped-TiO_(2)nanoparticles were tightly anchored on the surface of carbon hollow sphere to form a zero-dimensional/three dimensional(0D/3D)Cu-doped-TiO2/C heterojunction.The optimal Cu-doped-TiO_(2)/C heterojunction demon-strated greatly enhanced photocatalytic H_(2) generation activity(14.4 mmol·g^(-1)·h^(-1))compared with TiO_(2)(0.33 mmol·g^(-1)·h^(-1))and TiO_(2)/C(0.7 mmol·g^(-1)·h^(-1)).The performance improvement was mainly due to the syner-gistic effect of carbon hollow sphere cocatalyst and Cu-doping,the Cu-doping in TiO_(2)nanoparticles can minimize charge recombination and enhance the available photoex-cited electrons,while the 3D carbon hollow spheres can act as electron traps to accelerate the charge separation and offer abundant active sites for solar water splitting reaction. 展开更多
关键词 Cartbon hollow sphere Cu-doped TiO_(2) Photocatalytic H_(2)generation
原文传递
MoS_2 Nanosheet Arrays Rooted on Hollow rGO Spheres as Bifunctional Hydrogen Evolution Catalyst and Supercapacitor Electrode 被引量:9
11
作者 Shizheng Zheng Lijun Zheng +4 位作者 Zhengyou Zhu Jian Chen Jianli Kang Zhulin Huang Dachi Yang 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期70-80,共11页
MoS_2 has attracted attention as a promising hydrogen evolution reaction(HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggr... MoS_2 has attracted attention as a promising hydrogen evolution reaction(HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggregation and poor intrinsic conductivity. Here, hollow rGO sphere-supported ultrathin MoS_2 nanosheet arrays(hrGO@MoS_2) are constructed via a dual-template approach and employed as bifunctional HER catalyst and supercapacitor electrode material. Because of the expanded interlayer spacing in MoS_2 nanosheets and more exposed electroactive S–Mo–S edges, the constructed h-rGO@MoS_2 architectures exhibit enhanced HER performance. Furthermore, benefiting from the synergistic effect of the improved conductivity and boosted specific surface areas(144.9 m^2 g^(-1), ca. 4.6-times that of pristine MoS_2), the h-rGO@MoS_2 architecture shows a high specific capacitance(238 F g^(-1) at a current density of 0.5 A g^(-1)), excellent rate capacitance, and remarkable cycle stability. Our synthesis method may be extended to construct other vertically aligned hollow architectures,which may serve both as efficient HER catalysts and supercapacitor electrodes. 展开更多
关键词 MOS2 Reduced graphene oxide(rGO) Hollow spheres Hydrogen evolution reaction(HER) SUPERCAPACITOR
在线阅读 下载PDF
TiO_2-coated SnO_2 hollow spheres as anode materials for lithium ion batteries 被引量:4
12
作者 YI Jin LI Xiaoping +4 位作者 HU Shejun LI Weishan ZENG Ronghua FU Zhao CHEN Lang 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期589-594,共6页
TiO2-coated SnO2 (TCS) hollow spheres, which are new anode materials for lithium ion (Li-ion) batteries, were prepared and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transm... TiO2-coated SnO2 (TCS) hollow spheres, which are new anode materials for lithium ion (Li-ion) batteries, were prepared and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), and galvanostatic charge/discharge tests. The results obtained from XRD, SEM, and TEM show that TiO2 can be uniforrrdy coated on the surface of SnO2 hollow spheres with the assistance of anionic surfactant. The cyclic voltammograms indicate that both TiO2 and SnO2 exhibit the activity for Li-ion storage. The charge/discharge tests show that the prepared TCS hollow spheres have a higher reversible coulomb efficiency and a better cycling stability than the uncoated SnO2 hollow spheres. 展开更多
关键词 TiO2-coated SnO2 hollow spheres ANODE lithium ion batteries
在线阅读 下载PDF
Microwave-Assisted Synthesis of NiCo_2O_4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries 被引量:6
13
作者 Xiong Zhang Yanping Zhou +3 位作者 Bin Luo Huacheng Zhu Wei Chu Kama Huang 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期117-123,共7页
The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability i... The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo_2O_4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt,and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized productwas tested as an anode material in a sodium ion battery,was found to exhibit a high reversible specific capacity of 511 m Ahg^(-1) at 100 m Ag^(-1), and deliver high capacity retention after 100 cycles. 展开更多
关键词 NiCo2O4 Double-shelled hollow sphere Microwave Sodium ion battery
在线阅读 下载PDF
Assisting Bi_(2)MoO_(6) microspheres with phenolic resin-based ACSs as attractive tailor-made supporter for highly-efficient photocatalytic CO_(2) reduction 被引量:8
14
作者 Xiaochao Zhang Guangmin Ren +5 位作者 Changming Zhang Jinbo Xue Qiang Zhao Rui Li Yunfang Wang Caimei Fan 《Green Energy & Environment》 SCIE CSCD 2021年第5期693-702,共10页
It is rather essential to design glorious system with high CO_(2) adsorption capacity and electron migration efficiency for improving selective and effective CO_(2) reduction into solar fuels.Here,as-synthesized pheno... It is rather essential to design glorious system with high CO_(2) adsorption capacity and electron migration efficiency for improving selective and effective CO_(2) reduction into solar fuels.Here,as-synthesized phenolic resin spheres via suspension polymerization were carbonized and activated by water vapor to obtain activated carbon spheres(ACSs).Subsequently,Bi_(2)MoO_(6)/ACSs were prepared via hydrothermal-impregnated method.The systematical characterizations of samples,including XRD,XPS,SEM,EDX,DRS,BET,PL,CO_(2) adsorption isotherm,EIS and transient photocurrent,were analyzed.The results clearly demonstrated that Bi_(2)MoO_(6) with suitable oxidation reduction potentials and bandgap and ACSs with admirable CO_(2) adsorption and electrical conductivity not only enhanced separation efficiency of photoindued electron-hole pair,but also displayed as 1.8 times CO_(2) reduction activity to CO as single Bi_(2)MoO_(6) sample under Xe-lamp irradiation.Finally,a concerned photocatalytic CO_(2) reduction mechanism was proposed and investigated.Our findings should provide innovative guidance for designing a series of photocatalytic CO_(2) reduction materials with highly efficient and selective ability. 展开更多
关键词 CO_(2)reduction Bi_(2)MoO_(6)microspheres Activated carbon spheres Photocatalysis Adsorption capacity
在线阅读 下载PDF
Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts 被引量:6
15
作者 Xiaoyu Yue Yuguang Pu +2 位作者 Wen Zhang Ting Zhang Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期275-282,共8页
Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination o... Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination of hollow structure,TiO2 shell and carbon layer results in excellent electron conductivity,electrocatalytic activity,and chemical stability.These uniformed DSCT hollow spheres are used as catalyst support to synthesize Pt/DSCT hollow spheres electrocatalyst.The resulting Pt/DSCT hollow spheres exhibited high catalytic performance with a current density of 462 mA mg^-1 for methanol oxidation reaction,which is 2.52 times higher than that of the commercial Pt/C.Furthermore,the increased tolerance to carbonaceous poisoning with a higher If/Ibratio and a better long-term stability in acid media suggests that the DSCT hollow sphere is a promising C/TiO2-based catalyst support for direct methanol fuel cells applications. 展开更多
关键词 Catalyst support C/TiO2 hollow sphere Metal-support interactions Methanol oxidation reaction
在线阅读 下载PDF
Hollow TiO_2 spheres with improved visible light photocatalytic activity synergistically enhanced by multi-stimulative: Morphology advantage,carbonate-doping and the induced Ti^(3+) 被引量:3
16
作者 Guoliang Li Chunyang Liao Guibin Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第10期153-165,共13页
Great efforts have been devoted to improve the photocatalytic activity of TiO2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping ar... Great efforts have been devoted to improve the photocatalytic activity of TiO2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile onepot synthetic approach was developed to prepare C-doped hollow TiO2 spheres, which simultaneously realized these advantages. The synthesized TiO2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area(~180 m^2/g) and versatile porous texture. Carbonate-doping was achieved by a postthermal treatment at a relatively low temperature(200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti^(3+) induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO2 catalyst. It is not out of expectation that the asprepared C-doped hollow TiO2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation. 展开更多
关键词 Hollow TiO2 sphere CARBONATE Ti^3+ Visible light PHOTO-DEGRADATION Synergistic enhancement
原文传递
Resorcinol-formaldehyde resin-based porous carbon spheres with high CO_2 capture capacities 被引量:3
17
作者 Xuan Wang Jin Zhou +5 位作者 Wei Xing Boyu Liu Jianlin Zhang Hongtao Lin Hongyou Cui Shuping Zhuo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1007-1013,共7页
Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintai... Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintain the typical spherical shapes after the activation, and have highly developed ultra-microporosity with uniform pore size, indicating that almost the activation takes place in the interior of the polymer spheres. The narrow-distributed ultra-micropores are attributed to the "in-situ homogeneous activation"effect produced by the mono-dispersed potassium ions as a form of -OK groups in the bulk of polymer spheres. The CS-1 sample prepared under a KOH/resins weight ratio of 1 shows a very high COcapture capacity of 4.83 mmol/g and good CO/Nselectivity of7-45. We believe that the presence of a welldeveloped ultra-microporosity is responsible for excellent COsorption performance at room temperature and ambient pressure. 展开更多
关键词 CO2 capture Porous carbon Carbon sphere Ultra-micropore Resorcinol formaldehyde resins
在线阅读 下载PDF
Fabrication of flower-like mesoporous TiO_2 hierarchical spheres with ordered stratified structure as an anode for lithium-ion batteries 被引量:2
18
作者 Yujie Zheng Bingjie Liu +3 位作者 Pei Cao Hui Huang Jing Zhang Guowei Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第4期667-673,共7页
In this study, flower-like mesoporous TiO_2 hierarchical spheres(FMTHSs) with ordered stratified structure and TiO_2 nanoparticles(TNPs) were synthesized via a facile solvothermal route and an etching reaction. Multil... In this study, flower-like mesoporous TiO_2 hierarchical spheres(FMTHSs) with ordered stratified structure and TiO_2 nanoparticles(TNPs) were synthesized via a facile solvothermal route and an etching reaction. Multilamellar vesicles(MTSVs) and unilamellar TiO_2/SiO_2 vesicles(UTSVs) were prepared using cetyltrimethylammonium bromide and didodecyldimethylammonium bromide as structure-directing agents under different solvothermal conditions. FMTHSs and TNPs were obtained from the etching reactions of MTSVs and UTSVs, respectively, in an alkaline system. FMTHSs display flower-like, ordered stratified structures on each petal. The thickness of the ordered stratified structure is approximately3–6 nm, and the number of layers is approximately 2–4. The FMTHSs2 electrode exhibits the first discharge capacity of 212.4 m A h g^(-1) at 0.2 C, which is higher than that of TNPs electrode(167.6 mA h g^(-1)).The discharge specific capacity of FMTHSs2 electrode after 200 cycles at 1 C is 105.9 mA h g^(-1), which is higher than that of TNPs electrode(52.2 mA h g^(-1)) after the same number of cycles. The outstanding performance of FMTHSs2 electrode is attributed to the advantages of FMTHSs. In particular, their own stratified structure can provide additional active sites for reactions. The hierarchical structure can provide short diffusion length for Li^+, large electrolyte–electrode contact area, and superior accommodation of the strain of Li+intercalation/deintercalation. 展开更多
关键词 Lithium ion batteries FLOWER-LIKE TiO2 spheres STRATIFIED STRUCTURE Multialmellar TIO2/SIO2 vesicles Controllable morphology
原文传递
Facile fabrication of CeO_2 hollow microspheres with yeast as bio-templates 被引量:2
19
作者 牟广宇 魏清莲 黄永民 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第12期1329-1334,共6页
CeO2 hollow microspheres were prepared through a facile method by using yeast cells as bio-templates. The yeast pro- vided a solid flame for the deposition of cerium hydroxide to form the hybrid Ce(OH)3@yeast precur... CeO2 hollow microspheres were prepared through a facile method by using yeast cells as bio-templates. The yeast pro- vided a solid flame for the deposition of cerium hydroxide to form the hybrid Ce(OH)3@yeast precursor. The resulting CeO2 hollow microspheres were obtained by calcining the precursor. The products were characterized by field emission scanning electron micros- copy (FE-SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FTIR), N2 adsorption/desorption analysis, X-ray photoelectron spectrum (XPS) and H2 temperature programmed reduction (H2-TPR) It was found that the products fully retained the morphology of the yeast cells and the size of the hollow microspheres was about 1.5-2 μm. The catalytic test results showed that the as-obtained hollow CeO2 microspheres possessed a higher catalytic activity in CO oxidation than the commercial CeO2, which attributed to their higher surface area, hollow structure and superior reducibility. This study provided a promising route for the preparation of a variety of other inorganic hollow microspheres. 展开更多
关键词 bio-template CEO2 hollow spheres CO oxidation rare earths
原文传递
Fabrication and magnetic transformation from paramagnetic to ferrimagnetic of ZnFe2O4 hollow spheres 被引量:3
20
作者 Yi-cheng GE Zhi-long WANG +1 位作者 Mao-zhong YI Li-ping RAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1503-1509,共7页
ZnFe2O4 hollow spheres (ZFHs) with sizes of 200-302 nm were synthesized by simple impregnating method using the as-prepared phenolic formaldehyde (PF) spheres as templates and subsequent annealing at 500-700 ℃. The p... ZnFe2O4 hollow spheres (ZFHs) with sizes of 200-302 nm were synthesized by simple impregnating method using the as-prepared phenolic formaldehyde (PF) spheres as templates and subsequent annealing at 500-700 ℃. The prepared ZFHs are assembled by a large number of small nanoparticles with sizes of 15-20 nm, and many mesopores exist among these nanoparticles. The samples annealed at 500-550℃ exhibit a single cubic spinel structure, while higher annealing temperature leads to the formation of hexagonal ZnO and rhombohedral α-Fe2O3 secondary phases. The size of the assembled nanoparticles increases with the increase in annealing temperature. Novel magnetic transformation from paramagnetic to ferrimagnetic is induced by the reduction of annealing temperature and the saturation magnetization significantly increases from 2.3 to 13.5 A·m^2/kg. The effect of the formation of hollow sphere structure on the redistribution of Fe^3+ and Zn^2+ in the spinel structure was studied. 展开更多
关键词 ZnFe2O4 hollow spheres nanoparticles magnetic properties magnetic transformation
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部