期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Generalized Irreducible α-Matrices and Its Applications
1
作者 Yi Sun Haibin Zhang Chaoqian Li 《Advances in Linear Algebra & Matrix Theory》 2018年第3期111-121,共11页
The class of generalized α-matrices is presented by Cvetkovi?, L. (2006), and proved to be a subclass of H-matrices. In this paper, we present a new class of matrices-generalized irreducible α-matrices, and prove th... The class of generalized α-matrices is presented by Cvetkovi?, L. (2006), and proved to be a subclass of H-matrices. In this paper, we present a new class of matrices-generalized irreducible α-matrices, and prove that a generalized irreducible α-matrix is an H-matrix. Furthermore, using the generalized arithmetic-geometric mean inequality, we obtain two new classes of H-matrices. As applications of the obtained results, three regions including all the eigenvalues of a matrix are given. 展开更多
关键词 GENERALIZED IRREDUCIBLE α-matrices H-matrices IRREDUCIBLE NONSINGULAR EIGENVALUES
在线阅读 下载PDF
ENUMERATION OF (0,1)-MATRICES WITH CONSTANT ROW AND COLUMN SUMS 被引量:1
2
作者 Tan Zhonghua Gao Shanzhen Heinrich Niederhausen 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第4期479-486,共8页
Let fs,t(m, n) be the number of (0, 1) - matrices of size m × n such that each row has exactly s ones and each column has exactly t ones (sm = nt). How to determine fs,t(m,n)? As R. P. Stanley has obser... Let fs,t(m, n) be the number of (0, 1) - matrices of size m × n such that each row has exactly s ones and each column has exactly t ones (sm = nt). How to determine fs,t(m,n)? As R. P. Stanley has observed (Enumerative Combinatorics I (1997), Example 1.1.3), the determination of fs,t(m, n) is an unsolved problem, except for very small s, t. In this paper the closed formulas for f2,2(n, n), f3,2(m, n), f4,2(m, n) are given. And recursion formulas and generating functions are discussed. 展开更多
关键词 (0 1)-matrices labelled ball arrangement generating function.
在线阅读 下载PDF
应用γ-Matric皮带透视仪减小预均化设施规模
3
作者 关生林 《水泥技术》 2004年第4期64-65,共2页
1前言 随着水泥工业的不断发展,资源、能源、环保等问题引起社会的普遍关注.由于矿山开采过程自动化水平相对不高,造成水泥厂预均化设施的规模较大,尤其是建设规模较大的生产线,预均化设施占地面积大、投资高、运行和维护费用高;另外,... 1前言 随着水泥工业的不断发展,资源、能源、环保等问题引起社会的普遍关注.由于矿山开采过程自动化水平相对不高,造成水泥厂预均化设施的规模较大,尤其是建设规模较大的生产线,预均化设施占地面积大、投资高、运行和维护费用高;另外,由于预均化设施不能达到预期的效果,使大量的品位较低的矿石被废弃,造成资源的浪费.琉璃河水泥厂非常重视资源的可持续利用,通过多方面的论证,在二期技改工程(2500t/d)中采用了美国佳美公司的γ-Marc皮带透视仪,经过一年多的使用,取得了较好的效果,表现在对原料成分波动的适应性、提高产品质量、节能降耗、减轻工人劳动强度等方面. 展开更多
关键词 水泥工业 预均化 γ-matric皮带透视仪 控制系统
在线阅读 下载PDF
The Maximum Jump Number of (0, 1)-Matrices of Order 2k - 2 with Fixed Row and Column Sum k
4
作者 游林 王天明 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第2期244-254,共11页
In 1992, Brualdi and Jung first introduced the maximum jump number M(n, k), that is, the maximum number of the jumps of all (0, 1)-matrices of order n with k 1's in each row and column, and then gave a table about... In 1992, Brualdi and Jung first introduced the maximum jump number M(n, k), that is, the maximum number of the jumps of all (0, 1)-matrices of order n with k 1's in each row and column, and then gave a table about the values of M(n, k) when 1 ≤ k ≤ n ≤ 10. They also put forward several conjectures, including the conjecture M(2k - 2, k) = 3k - 4 + [k-2/2]. In this paper, we prove that b(A) ≥ 4 for every A ∈ A(2k - 2, k) if k ≥ 11, and find another counter-example to this conjecture . 展开更多
关键词 (0 1)-matrices jump number stair number.
在线阅读 下载PDF
Counter-Examples to the ConjectureM(2k, k + 1) = 3k - 1 + [k-1/2]
5
作者 游 林 王天明 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第2期194-196,共3页
The maxinmum jump number M(n, k) over a class of n×n matrices of zerosand ones with constant row and column sum k has been investigated by Brualdi andJung in [1] where they proposed the conjectureM(2k, k + 1) = 3... The maxinmum jump number M(n, k) over a class of n×n matrices of zerosand ones with constant row and column sum k has been investigated by Brualdi andJung in [1] where they proposed the conjectureM(2k, k + 1) = 3l - 1 + [k-1/2]In this note, we give two counter-examples to this conjecture. 展开更多
关键词 jump number (0 1)-matrices CONJECTURE counter-examples
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部