期刊文献+
共找到28,665篇文章
< 1 2 250 >
每页显示 20 50 100
Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks
1
作者 Khalil Ullah Song Jian +4 位作者 Muhammad Naeem Ul Hassan Suliman Khan Mohammad Babar Arshad Ahmad Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1151-1169,共19页
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user... The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques. 展开更多
关键词 Next generation networks massive mimo communication network artificial intelligence 5g adversarial attacks channel estimation information security
在线阅读 下载PDF
Enhancing Bandwidth Allocation Efficiency in 5G Networks with Artificial Intelligence
2
作者 Sarmad K.Ibrahim Saif A.Abdulhussien +1 位作者 Hazim M.ALkargole Hassan H.Qasim 《Computers, Materials & Continua》 2025年第9期5223-5238,共16页
The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communicati... The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communication(mMTC)—present tremendous challenges to conventional methods of bandwidth allocation.A new deep reinforcement learning-based(DRL-based)bandwidth allocation system for real-time,dynamic management of 5G radio access networks is proposed in this paper.Unlike rule-based and static strategies,the proposed system dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to maximize the achievable throughput,fairness,and compliance with QoS requirements.By using extensive simulations mimicking real-world 5G scenarios,the proposed DRL model outperforms current baselines like Long Short-Term Memory(LSTM),linear regression,round-robin,and greedy algorithms.It attains 90%–95%of the maximum theoretical achievable throughput and nearly twice the conventional equal allocation.It is also shown to react well under delay and reliability constraints,outperforming round-robin(hindered by excessive delay and packet loss)and proving to be more efficient than greedy approaches.In conclusion,the efficiency of DRL in optimizing the allocation of bandwidth is highlighted,and its potential to realize self-optimizing,Artificial Intelligence-assisted(AI-assisted)resource management in 5G as well as upcoming 6G networks is revealed. 展开更多
关键词 5g bandwidth allocation DRL for 5g AI-based resource management QoS optimization for 5g networks dynamic spectrum allocation SON
在线阅读 下载PDF
Intelligent Management of Resources for Smart Edge Computing in 5G Heterogeneous Networks Using Blockchain and Deep Learning
3
作者 Mohammad Tabrez Quasim Khair Ul Nisa +3 位作者 Mohammad Shahid Husain Abakar Ibraheem Abdalla Aadam Mohammed Waseequ Sheraz Mohammad Zunnun Khan 《Computers, Materials & Continua》 2025年第7期1169-1187,共19页
Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing... Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework. 展开更多
关键词 Smart edge computing heterogeneous networks blockchain 5g network internet of things artificial intelligence
在线阅读 下载PDF
Analysis of Feasible Solutions for Railway 5G Network Security Assessment
4
作者 XU Hang SUN Bin +1 位作者 DING Jianwen WANG Wei 《ZTE Communications》 2025年第3期59-70,共12页
The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challe... The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challenges.Ensuring the security and reliability of railway 5G networks is therefore essential.This paper presents a detailed examination of security assessment techniques for railway 5G networks,focusing on addressing the unique security challenges in this field.In this paper,various security requirements in railway 5G networks are analyzed,and specific processes and methods for conducting comprehensive security risk assessments are presented.This study provides a framework for securing railway 5G network development and ensuring its long-term sustainability. 展开更多
关键词 railway 5g network 5g-R information security risk assessment penetration testing
在线阅读 下载PDF
5G network planning in connecting urban areas for trains service using a genetic algorithm
5
作者 Evangelos D.Spyrou Vassilios Kappatos 《High-Speed Railway》 2025年第2期155-162,共8页
The adoption of 5G for Railways(5G-R)is expanding,particularly in high-speed trains,due to the benefits offered by 5G technology.High-speed trains must provide seamless connectivity and Quality of Service(QoS)to ensur... The adoption of 5G for Railways(5G-R)is expanding,particularly in high-speed trains,due to the benefits offered by 5G technology.High-speed trains must provide seamless connectivity and Quality of Service(QoS)to ensure passengers have a satisfactory experience throughout their journey.Installing base stations along urban environments can improve coverage but can dramatically reduce the experience of users due to interference.In particular,when a user with a mobile phone is a passenger in a high speed train traversing between urban centres,the coverage and the 5G resources in general need to be adequate not to diminish her experience of the service.The utilization of macro,pico,and femto cells may optimize the utilization of 5G resources.In this paper,a Genetic Algorithm(GA)-based approach to address the challenges of 5G network planning for 5G-R services is presented.The network is divided into three cell types,macro,pico,and femto cells—and the optimization process is designed to achieve a balance between key objectives:providing comprehensive coverage,minimizing interference,and maximizing energy efficiency.The study focuses on environments with high user density,such as high-speed trains,where reliable and high-quality connectivity is critical.Through simulations,the effectiveness of the GA-driven framework in optimizing coverage and performance in such scenarios is demonstrated.The algorithm is compared with the Particle Swarm Optimisation(PSO)and the Simulated Annealing(SA)methods and interesting insights emerged.The GA offers a strong balance between coverage and efficiency,achieving significantly higher coverage than PSO while maintaining competitive energy efficiency and interference levels.Its steady fitness improvement and adaptability make it well-suited for scenarios where wide coverage is a priority alongside acceptable performance trade-offs. 展开更多
关键词 High speed train 5g network planning genetic algorithm
在线阅读 下载PDF
ScalaDetect-5G:Ultra High-Precision Highly Elastic Deep Intrusion Detection System for 5G Network
6
作者 Shengjia Chang Baojiang Cui Shaocong Feng 《Computer Modeling in Engineering & Sciences》 2025年第9期3805-3827,共23页
With the rapid advancement of mobile communication networks,key technologies such as Multi-access Edge Computing(MEC)and Network Function Virtualization(NFV)have enhanced the quality of service for 5G users but have a... With the rapid advancement of mobile communication networks,key technologies such as Multi-access Edge Computing(MEC)and Network Function Virtualization(NFV)have enhanced the quality of service for 5G users but have also significantly increased the complexity of network threats.Traditional static defense mechanisms are inadequate for addressing the dynamic and heterogeneous nature of modern attack vectors.To overcome these challenges,this paper presents a novel algorithmic framework,SD-5G,designed for high-precision intrusion detection in 5G environments.SD-5G adopts a three-stage architecture comprising traffic feature extraction,elastic representation,and adaptive classification.Specifically,an enhanced Concrete Autoencoder(CAE)is employed to reconstruct and compress high-dimensional network traffic features,producing compact and expressive representations suitable for large-scale 5G deployments.To further improve accuracy in ambiguous traffic classification,a Residual Convolutional Long Short-Term Memory model with an attention mechanism(ResCLA)is introduced,enabling multi-level modeling of spatial–temporal dependencies and effective detection of subtle anomalies.Extensive experiments on benchmark datasets—including 5G-NIDD,CIC-IDS2017,ToN-IoT,and BoT-IoT—demonstrate that SD-5G consistently achieves F1 scores exceeding 99.19%across diverse network environments,indicating strong generalization and real-time deployment capabilities.Overall,SD-5G achieves a balance between detection accuracy and deployment efficiency,offering a scalable,flexible,and effective solution for intrusion detection in 5G and next-generation networks. 展开更多
关键词 5g security network intrusion detection feature engineering deep learning
在线阅读 下载PDF
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
7
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5g slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
Key Agreement and Management Scheme Based on Blockchain for 5G-Enabled Vehicular Networks
8
作者 Wang Zhihua Wang Shuaibo +4 位作者 Wang Haofan Li Jiaze Yao Yizhe Wang Yongjian Yang Xiaolong 《China Communications》 2025年第3期270-287,共18页
5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large nu... 5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation. 展开更多
关键词 blockchain certificateless public key cryptography 5g vehicular networks key agreement key management
在线阅读 下载PDF
Learning-Based Delay Sensitive and Reliable Traffic Adaptation for DC-PLC and 5G Integrated Multi-Mode Heterogeneous Networks
9
作者 Tian Gexing Wang Ruiqiuyu +6 位作者 Pan Chao Zhou Zhenyu Yang Junzhong Zhao Chenkai Chen Bei Yang Sen Shahid Mumtaz 《China Communications》 2025年第4期65-80,共16页
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li... Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms. 展开更多
关键词 DC-PLC and 5g integration multi-mode heterogeneous networks traffic adaptation traffic admission control traffic partition
在线阅读 下载PDF
Soft Resource Slicing for Industrial Mixed Traffic in 5G Networks
10
作者 Jingfang Ding Meng Zheng Haibin Yu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期463-465,共3页
Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-toler... Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme. 展开更多
关键词 g networks industrial mixed traffic dynamic switching soft slicing strategy periodic delay sensitive traffic soft slicing dynamic switching g networks dynamic switching strategy
在线阅读 下载PDF
Research on Railway 5G-R Network Security Technology
11
作者 ZHANG Song WANG Wei +3 位作者 TIAN Zhiji MA Jun SUN Bin SHEN Meiying(Translated) 《Chinese Railways》 2025年第1期29-36,共8页
The 5G-R network is on the verge of entering the construction stage.Given that the dedicated network for railways is closely linked to train operation safety,there are extremely high requirements for network security.... The 5G-R network is on the verge of entering the construction stage.Given that the dedicated network for railways is closely linked to train operation safety,there are extremely high requirements for network security.As a result,there is an urgent need to conduct research on 5G-R network security.To comprehensively enhance the end-to-end security protection of the 5G-R network,this study summarized the security requirements of the GSM-R network,analyzed the security risks and requirements faced by the 5G-R network,and proposed an overall 5G-R network security architecture.The security technical schemes were detailed from various aspects:5G-R infrastructure security,terminal access security,networking security,operation and maintenance security,data security,and network boundary security.Additionally,the study proposed leveraging the 5G-R security situation awareness system to achieve a comprehensive upgrade from basic security technologies to endogenous security capabilities within the 5G-R system. 展开更多
关键词 5g-R network security security risks endogenous security situational awareness
原文传递
Attention Driven YOLOv5 Network for Enhanced Landslide Detection Using Satellite Imagery of Complex Terrain
12
作者 Naveen Chandra Himadri Vaidya +2 位作者 Suraj Sawant Shilpa Gite Biswajeet Pradhan 《Computer Modeling in Engineering & Sciences》 2025年第6期3351-3375,共25页
Landslide hazard detection is a prevalent problem in remote sensing studies,particularly with the technological advancement of computer vision.With the continuous and exceptional growth of the computational environmen... Landslide hazard detection is a prevalent problem in remote sensing studies,particularly with the technological advancement of computer vision.With the continuous and exceptional growth of the computational environment,the manual and partially automated procedure of landslide detection from remotely sensed images has shifted toward automatic methods with deep learning.Furthermore,attention models,driven by human visual procedures,have become vital in natural hazard-related studies.Hence,this paper proposes an enhanced YOLOv5(You Only Look Once version 5)network for improved satellite-based landslide detection,embedded with two popular attention modules:CBAM(Convolutional Block Attention Module)and ECA(Efficient Channel Attention).These attention mechanisms are incorporated into the backbone and neck of the YOLOv5 architecture,distinctly,and evaluated across three YOLOv5 variants:nano(n),small(s),and medium(m).The experiments use opensource satellite images from three distinct regions with complex terrain.The standard metrics,including F-score,precision,recall,and mean average precision(mAP),are computed for quantitative assessment.The YOLOv5n+CBAM demonstrates the most optimal results with an F-score of 77.2%,confirming its effectiveness.The suggested attention-driven architecture augments detection accuracy,supporting post-landslide event assessment and recovery. 展开更多
关键词 Attention mechanism convolutional neural networks LANDSLIDES remote sensing images YOLOv5
在线阅读 下载PDF
基于5G网络的图迈^(®)手术机器人远程动物实验研究 被引量:1
13
作者 马世勋 狐鸣 +6 位作者 马云涛 景武堂 田宏伟 龚世怡 杨佳 杨婧 蔡辉 《机器人外科学杂志(中英文)》 2025年第1期12-17,23,共7页
目的:探索在不同距离5G网络环境下国产图迈^(®)手术机器人在远程动物手术中的可行性、安全性及稳定性。^(®)方法:将6头实验用标准猪随机分为6组,使用国产图迈手术机器人在5G网络环境下从甘肃省6个地区分别对位于甘肃省人民医... 目的:探索在不同距离5G网络环境下国产图迈^(®)手术机器人在远程动物手术中的可行性、安全性及稳定性。^(®)方法:将6头实验用标准猪随机分为6组,使用国产图迈手术机器人在5G网络环境下从甘肃省6个地区分别对位于甘肃省人民医院动物手术室的6头实验猪实施远程胆囊切除手术。对实验过程中的网络速率、网络延迟、调试时间、装机时间、手术时间、失血量、不良事件和术中并发症进行记录。结果:本次实验历时15 d完成,累计往返距离超过3000km,最远的手术直线距离约为780km,6台远程动物胆囊切除手术均在5G网络环境下顺利完成。平均网络延迟为(55.16±25.33)ms,平均调试时间为(65.17±13.75)min,平均装机时间为(5.12±1.60)min,平均机器人操控时间为(22.00±5.40)min,平均总手术时间为(44.00±4.23)min,平均失血量为(5.83±7.36)mL,术^(®)中发生弱网不良事件1次,无术中并发症发生。结论:5G网络环境下使用国产图迈手术机器人可以安全、稳定地进行远程动物手术,这为实现远程机器人临床手术奠定了理论基础。 展开更多
关键词 5g网络 机器人辅助手术 图迈手术机器人 动物实验 胆囊切除术
暂未订购
5G远程机器人辅助远端胃癌根治术一例报道(附手术视频) 被引量:7
14
作者 詹渭鹏 马于祺 +8 位作者 狐鸣 杨婧 郭进 黄显斌 邓渊 蒋智良 蔡辉 王晓鹏 马云涛 《机器人外科学杂志(中英文)》 2025年第1期18-23,共6页
本研究报道了世界首例5G远程图迈®腔镜手术机器人辅助腹腔镜下胃癌根治术,该手术于2023年5月19日在甘肃省人民医院普外科完成。手术采用本中心创新的“3+2”模式机器人辅助胃癌根治术,并遵循“程序化胃癌手术七步法”进行了淋巴结... 本研究报道了世界首例5G远程图迈®腔镜手术机器人辅助腹腔镜下胃癌根治术,该手术于2023年5月19日在甘肃省人民医院普外科完成。手术采用本中心创新的“3+2”模式机器人辅助胃癌根治术,并遵循“程序化胃癌手术七步法”进行了淋巴结的清扫。手术过程顺利,总手术时间为250 min,主从控制时间为190 min,术中出血约50 mL。术后麻醉恢复后,患者拔除气管插管后返回病房,术后10 d病情稳定好转并成功出院。本次远程机器人辅助胃癌根治术是人体肿瘤手术的首次尝试,初步验证了5G远程国产机器人手术技术可行。远程手术的应用有助于医疗资源下沉,将有效解决目前医疗资源供需不平衡现象,缩小地域诊疗差距,对于降低医疗开支、减轻患者的医疗负担有十分重要的意义。 展开更多
关键词 远程手术 机器人辅助手术 胃癌 5g通信技术
暂未订购
5G远程机器人手术的应用现状及展望 被引量:6
15
作者 景武堂 万浩浩 +7 位作者 苗长丰 陈东东 许永成 李惠民 柳利利 蔡辉 马云涛 杨婧 《机器人外科学杂志(中英文)》 2025年第1期1-5,共5页
第五代通信技术的商业化应用为远程机器人手术的安全性和有效性提供了保证。远程机器人手术能够为需要机器人手术治疗的患者提供远程医疗服务,缓解偏远地区优秀外科医生短缺的现状,使偏远落后地区患者享受到优质医疗资源,提高患者就医... 第五代通信技术的商业化应用为远程机器人手术的安全性和有效性提供了保证。远程机器人手术能够为需要机器人手术治疗的患者提供远程医疗服务,缓解偏远地区优秀外科医生短缺的现状,使偏远落后地区患者享受到优质医疗资源,提高患者就医满意率。另外,通过远程指导当地缺乏专业知识的外科医生,有助于提高其临床诊疗水平。本文针对国内外机器人远程手术的应用现状、潜在挑战和局限性等方面进行讨论,并对5G远程机器人手术的前景进行了展望。 展开更多
关键词 远程手术 5g通信技术 机器人辅助手术 远程医疗 协同诊疗
暂未订购
基于5G通信网络的工程船舶载运信息监测系统 被引量:2
16
作者 陈香莲 杨正祥 《舰船科学技术》 北大核心 2025年第7期160-163,共4页
为实时掌控工程船舶运动以及状态等多种载运信息,设计基于5G通信网络的工程船舶载运信息监测系统。船端部分通过多种传感器实时采集船舶航行状态、货物状态等载运信息;在船端与岸上连接桥梁—5G通信网络作用下,将采集信息实时、准确地... 为实时掌控工程船舶运动以及状态等多种载运信息,设计基于5G通信网络的工程船舶载运信息监测系统。船端部分通过多种传感器实时采集船舶航行状态、货物状态等载运信息;在船端与岸上连接桥梁—5G通信网络作用下,将采集信息实时、准确地传输至岸上部分;岸上部分接收、处理、存储和分析接收到数据,得出工程船舶载运信息监测结果,其中在停船监测方面,数据处理中心能够实时捕捉并记录船舶的停泊时间、位置等关键信息。岸上部分的载运信息相关监测结果,可通过监测平台予以呈现。实验结果显示:该系统的通信时延低、数据上传速度快,能够实时监测船舶多种载运信息并进行可视化展现。 展开更多
关键词 5g通信网络 工程船舶 载运信息 监测系统 停泊监测
在线阅读 下载PDF
5G远程机器人辅助袖状胃切除术首例报道 被引量:1
17
作者 王晓鹏 王艳 +3 位作者 马云涛 苏河 牛向东 狐鸣 《中国微创外科杂志》 北大核心 2025年第1期46-51,共6页
本文报道2023年12月14日完成5G远程机器人辅助袖状胃切除术1例,采用微创图迈腔镜手术机器人系统(MT-1000)和5G信号网络系统,双主刀模式,患者平台位于甘肃省人民医院手术室,主操控台位于甘肃省人民医院兰州新区分院手术室(两者直线距离75... 本文报道2023年12月14日完成5G远程机器人辅助袖状胃切除术1例,采用微创图迈腔镜手术机器人系统(MT-1000)和5G信号网络系统,双主刀模式,患者平台位于甘肃省人民医院手术室,主操控台位于甘肃省人民医院兰州新区分院手术室(两者直线距离75.6 km)。手术总时长120 min,其中装机时间30 min,机器人操作时间90 min。术中网络延迟(55.16±25.33)ms,丢包率0.01%~0.1%。未发生网络中断等网络不良事件,手术顺利完成。 展开更多
关键词 5g网络 远程机器人手术 袖状胃切除术 机器人辅助手术 网络延迟
在线阅读 下载PDF
5G 远程机器人手术临床应用相关问题思考
18
作者 李红强 殷德涛 《医学与哲学》 北大核心 2025年第9期36-39,共4页
5G远程机器人手术突破了地域空间限制、优化了医疗资源分配、手术操作精准,其独特的技术优势组合对提升医疗服务水平、改善患者治疗体验具有重要意义。同时,作为前沿医疗技术,5G远程机器人手术在远程及应用端医护人员水平和协同配合、... 5G远程机器人手术突破了地域空间限制、优化了医疗资源分配、手术操作精准,其独特的技术优势组合对提升医疗服务水平、改善患者治疗体验具有重要意义。同时,作为前沿医疗技术,5G远程机器人手术在远程及应用端医护人员水平和协同配合、手术安全控制、患者隐私保护、医疗成本控制及法律伦理审查等方面面临挑战。深刻理解并积极发挥5G机器人远程手术的优势,规避局限性,需要医护及设备操作人员、医疗机构、网络设备供应商、国家相关主管部门和行业协会协同合作,以期为5G机器人远程手术的合理应用和健康发展提供保障。 展开更多
关键词 手术机器人 远程手术 5g 通信技术
暂未订购
基于5G智能移动救护系统在突发公共卫生事件院前急救体系的构建与实践 被引量:4
19
作者 李嘉嘉 屈敬婷 +4 位作者 李汉斌 王海华 黄春艳 曾丽媚 钟娟 《贵州医药》 2025年第2期302-304,共3页
目的分析基于5G智能移动救护系统在突发公共卫生事件院前急救体系的构建与实践效果。方法将100例因突发公共卫生事件收治入院的患者作为研究样本,其中2021年1—12月院前急救为常规院前急救(对照组,n=100),将2022年1月至2023年12月接收... 目的分析基于5G智能移动救护系统在突发公共卫生事件院前急救体系的构建与实践效果。方法将100例因突发公共卫生事件收治入院的患者作为研究样本,其中2021年1—12月院前急救为常规院前急救(对照组,n=100),将2022年1月至2023年12月接收的患者作为试验组(实施5G智能移动救护系统,n=100)。对比两组抢救时效指标(呼救至出诊时间、出诊至入院时间、初步救治时间、检查时间、急诊停留时间)、救治成功率及患方满意度。结果试验组救治成功率高于对照组(P<0.05);试验组呼救至出诊时间、出诊至入院时间、初步救治时间、检查时间、急诊停留时间均短于对照组(P<0.05);试验组患者对急救护理服务满意度评分较对照组更高(P<0.05)。结论在突发公共卫生事件院前急救体系中应用基于5G智能移动救护系统可提升急救质量,值得推广应用。 展开更多
关键词 基于5g智能移动救护系统 突发公共卫生事件 院前急救
暂未订购
基于全球首例5G远程机器人辅助袖状胃切除术的可行性分析(附手术视频) 被引量:2
20
作者 王晓鹏 王艳 +5 位作者 狐鸣 牛向东 张旭 杨婧 马云涛 苏河 《机器人外科学杂志(中英文)》 2025年第1期24-27,共4页
2023年12月14日甘肃省人民医院普外科应用国产图迈®腔镜机器人手术系统完成首例5G远程袖状胃切除手术。手术过程顺利,装机时间30 min,手术总时长120 min,操控机器人时间90 min,出血量20 mL。术中平均网络延迟(55.16±25.33)ms... 2023年12月14日甘肃省人民医院普外科应用国产图迈®腔镜机器人手术系统完成首例5G远程袖状胃切除手术。手术过程顺利,装机时间30 min,手术总时长120 min,操控机器人时间90 min,出血量20 mL。术中平均网络延迟(55.16±25.33)ms,丢包率为0.01%~0.1%,术中未发生网络中断等网络不良事件。术后未发生并发症。结果表明,5G远程机器人辅助袖状胃切除术是安全、有效的,具有临床应用价值。 展开更多
关键词 5g通信技术 机器人辅助手术 袖状胃切除术
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部