For any positive integer N,we clearly describe all finite-dimensional algebras A such that the upper triangular matrix algebras TN(A)are piecewise hereditary.Consequently,we describe all finite-dimensional algebras A ...For any positive integer N,we clearly describe all finite-dimensional algebras A such that the upper triangular matrix algebras TN(A)are piecewise hereditary.Consequently,we describe all finite-dimensional algebras A such that their derived categories of N-complexes are triangulated equivalent to derived categories of hereditary abelian categories,and we describe the tensor algebras A⊗K[X]/(X^(N))for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.展开更多
文摘For any positive integer N,we clearly describe all finite-dimensional algebras A such that the upper triangular matrix algebras TN(A)are piecewise hereditary.Consequently,we describe all finite-dimensional algebras A such that their derived categories of N-complexes are triangulated equivalent to derived categories of hereditary abelian categories,and we describe the tensor algebras A⊗K[X]/(X^(N))for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.