All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercializat...All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.展开更多
Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corros...Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.展开更多
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept...In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.展开更多
Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit fr...Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.展开更多
Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effect...Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effective in enhancing the Na+storage capability,however,a one-step regulation strategy to achieve simultaneous multi-scale structures optimization is highly desirable.Herein,we have systematically investigated the effects of boron doping on hard carbon’s microstructure and interface chemistry.A variety of structure characterizations show that appropriate amount of boron doping can increase the size of closed pores via rearrangement of carbon layers with improved graphitization degree,which provides more Na+storage sites.In-situ Fourier transform infrared spectroscopy/electrochemical impedance spectroscopy (FTIR/EIS) and X-ray photoelectron spectroscopy (XPS) analysis demonstrate the presence of more BC3and less B–C–O structures that result in enhanced ion diffusion kinetics and the formation of inorganic rich and robust SEI,which leads to facilitated charge transfer and excellent rate performance.As a result,the hard carbon anode with optimized boron doping content exhibits enhanced rate and cycling performance.In general,this work unravels the critical role of boron doping in optimizing the pore structure,interface chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced Na+storage performance.展开更多
Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-depositi...Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability.展开更多
Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not onl...Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not only challenges the conventional characterization of TeO_(2) as an insulator but also conflicts with the anticipated difficulty in hole doping of TeO_(2) by established chemical trends. Notably, the reported Fermi level of 0.9 eV above the valence band maximum actually suggests that the material is an insulator, contradicting the high hole density obtained by Hall effect measurement. Furthermore, the detected residual Se and the possible reduced elemental Te in the 2D β-TeO_(2) samples introduces complexity, considering that elemental Se, Te, and Te_(1−x)Se_(x) themselves are high-mobility p-type semiconductors. Therefore, doubts regarding the true cause of the p-type conductivity observed in the 2D β-TeO_(2) samples arise. In this Letter, we employ density functional theory calculations to illustrate that TeO_(2), whether in its bulk forms of α-, β-, or γ-TeO_(2), or in the 2D β-TeO_(2) nanosheets, inherently exhibits insulating properties and poses challenges in carrier doping due to its shallow conduction band minimum and deep valence band maximum. Our findings shed light on the insulating properties and doping difficulty of TeO_(2), contrasting with the claimed p-type conductivity in the 2D β-TeO_(2) samples, prompting inquiries into the true origin of the p-type conductivity.展开更多
As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancin...As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.展开更多
By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts d...By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability.展开更多
The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this wor...The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications.展开更多
Y_(3)Al_(2)Ga_(3)O_(12):Ce^(3+),Cr^(3+)(YAGG:Ce^(3+),Cr^(3+)),as a persistent luminescent material,has advantages of high initial luminescence intensity and long persistent time,which is promising in persistent lumine...Y_(3)Al_(2)Ga_(3)O_(12):Ce^(3+),Cr^(3+)(YAGG:Ce^(3+),Cr^(3+)),as a persistent luminescent material,has advantages of high initial luminescence intensity and long persistent time,which is promising in persistent luminescent material applications.At present,YAGG:Ce^(3+),Cr^(3+)powders exhibit good persistent performance,but their persistent performance of ceramics still needs to be further improved to meet the new requirements.In this work,(Y_(0.998)Ce_(0.002))_(3)(Al_(1-x)Cr_(x))_(2)Ga_(3)O_(12) ceramics with different Cr^(3+)doping concentrations were prepared by solid-state reaction,including air pre-sintering,hot isostatic pressing(HIP)post-treatment and air annealing,to investigate the effects of Cr^(3+)doping concentration on the microstructure,optical properties and persistent performance of the ceramics.The results showed that as the doping concentration of Cr^(3+)increased from 0.025%to 0.2%(in atom),no significant effect of Cr^(3+)concentration on the morphology of pre-sintered ceramics or HIP post-treatment ceramics was observed,but the in-line transmittance gradually increased while the persistent performance gradually decreased.Among them,YAGG:Ce^(3+),Cr^(3+)ceramics doped with 0.025%Cr^(3+)showed the strongest initial luminescence intensity exceeding 6055 mcd/m^(2) and a persistent time of 1030 min after air pre-sintering combined with HIP post-treatment and air annealing.By optimizing the Cr^(3+)doping concentration and the fabrication process,the persistent luminescence(PersL)performance of the YAGG:Ce^(3+),Cr^(3+)ceramics was obviously improved.展开更多
Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,i...Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,its long-cycle and rate performance are significantly constrained by the low Na^(+)electronic conductivity of NVPOF.Furthermore,the prevalent self-discharge phenomenon restricts its applicability in practical applications.In this paper,the cathode material Na_(3)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(x=0.16)was synthesized by quantitatively introducing Fe^(3+)into the V-site of NVPOF.The introduction of Fe^(3+)significantly reduced the original bandgap and the energy barrier of NVPOF,as demonstrated through density functional theory calculations(DFT).When material x=0.16 is employed as the cathode material for the sodium-ion battery,the Na^(+)diffusion coefficient is significantly enhanced,exhibiting a lower activation energy of42.93 kJ mol^(-1).Consequently,material x=0.16 exhibits excellent electrochemical performance(rate capacity:57.32 mA h g^(-1)@10 C,cycling capacity:the specific capacity of 101.3 mA h g^(-1)can be stably maintained after 1000 cycles at 1 C current density).It can also achieve a full charge state in only2.39 min at a current density of 10 C while maintaining low energy loss across various stringent self-discharge tests.In addition,the sodium storage mechanism associated with the three-phase transition of Na_(X)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(X=1,2,3)was elucidated by a series of experiments.In conclusion,this study presents a novel approach to multifunctional advanced sodium-ion battery cathode materials.展开更多
In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable struc...In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable structure with expanded crystal lattice distance which improves Li ion diffusion kinetics.The dopants have suppressed the growth of primary particles,formed a coating on the surface,and promoted the elongated morphology.Moreover,the mechanical strength of these particles has increased,as confirmed by the nanoindentation test,which can help suppress particle cracking.The detrimental H2-H3 phase transition has been postponed by 90 mV allowing the cathode to operate at a higher voltage.A better cycling stability over 100 cycles with 69%capacity retention has been observed.We believe this work points out a way to improve the cycling performance,Coulombic efficiency and capacity retention in Ni-rich cathodes.展开更多
Perovskite barium titanate(BaTiO3)demonstrates exceptional dielectric properties as a promising microwave-absorbing(MA)material.Leveraging structural flexibility of perovskites,magnetic components can be incorporated ...Perovskite barium titanate(BaTiO3)demonstrates exceptional dielectric properties as a promising microwave-absorbing(MA)material.Leveraging structural flexibility of perovskites,magnetic components can be incorporated at A/B-sites to enhance MA performance,yet the fundamental disparity in MA mechanisms between A/B-site magnetic doping remains elusive.Herein,nickel-doped BaTiO3 perovskites were systematically synthesized through precise adjustment of the Ba/Ti molar ratio to achieve both A-site(Ni_(x)Ba_(1−x)TiO_(3),N_(x)BTO)and B-site(BaTi_(1−x)Ni_(x)O_(3),BTN^(x)O)substitutions(0≤x≤0.1)via a simple one-step hydrothermal method.Notably,A-site Ni^(2+)substitution in N_(x)BTO induced superior magnetic loss(tanδμ=0.39)attributed to eddy-current dissipation,while B-site doping in BTN^(x)O achieved higher dielectric loss(tanδε=0.49).The N0.1BTO sample exhibited optimal MA performance with a remarkable minimum reflection loss(RLmin)of−44.39 dB and broad effective absorption bandwidth(EAB=8.66 GHz)covering the Ku-band and 67%X-band.Multimodal analysis revealed synergistic interactions among multiple reflection and scattering,multi-polarization relaxation,natural resonance,and eddy currents.In contrast,BTN0.01O demonstrated deeper RLmin(−50.88 dB)but narrower EAB(3.33 GHz)governed by dielectric mechanisms.Structural characterization indicated A-site doping induced lattice distortion,reduced unit-cell volume,and optimized oxygen vacancy distribution,synergistically balancing magneto-dielectric parameters.Conversely,B-site substitution increased oxygen vacancy concentration and carrier mobility while amplifying dielectric fluctuations.The spatial occupation preference of A/B dopants(A-site and B-site)governs lattice symmetry breaking,consequently establishing structure-property relationships and underpinning the material’s tunable dielectric behavior and magnetic phenomena.This work proposes a site-selective doping strategy for designing high-performance perovskite MA materials through magneto-dielectric equilibrium optimization.展开更多
The rock-salt cubic SnSe compound with multiple valleys and inherent low thermal conductivity is considered to be a promising thermoelectric compound.In this study,heterogeneous Pb atoms were strategically introduced ...The rock-salt cubic SnSe compound with multiple valleys and inherent low thermal conductivity is considered to be a promising thermoelectric compound.In this study,heterogeneous Pb atoms were strategically introduced into the lattice of cubic SnSe matrix,synergistically adjusting the thermoelectric transport properties of samples by optimizing hole carrier concentration(n)and suppressing thermal conductivity(κ_(tot)).When the doping content reached 0.08 mol,the peak power factor(PF)at 300 K increased to 20.00μW·cm^(-1)·K^(-2).The growing internal microstrain induced by the differences in atomic size strengthened the phonon scattering and effectively reduced the lattice thermal conductivity(κ_(L)).With further decoupling of the electrical and thermal transport properties,a peak thermoelectric figure of merit(ZT)of 0.82 and an average ZT of 0.42(300-750 K)were achieved in the samples doped with 0.10 mol Pb.These findings highlight the effectiveness of the selected dopants and demonstrate their synergy in improving the performance of thermoelectric materials.展开更多
Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are...Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.展开更多
Manipulating unintentional doping in graphene layers, which is influenced by environmental factors and supporting substrates, is of significant concern for the performance and advancement of graphene-based devices. In...Manipulating unintentional doping in graphene layers, which is influenced by environmental factors and supporting substrates, is of significant concern for the performance and advancement of graphene-based devices. In this context,laser-induced tuning of charge carriers in graphene facilitates the exploration of graphene's properties in relation to its surroundings and enables laser-assisted functionalization. This has the potential to advance optoelectronic devices that utilize graphene on transparent dielectric substrates, such as Al_(2)O_(3). In this work, laser power(PL) in Raman spectroscopy is used as a convenient contactless tool to manipulate and control unintentional carrier concentration and Fermi level position(EF) in graphene/α-Al_(2)O_(3)(G/Al_(2)O_(3)) under ambient conditions. Samples are annealed at 400℃ for two hours in an(Ar + H_(2)) atmosphere to remove any chemical residues. Analysis of the peak frequency(ω) and full width at half maximum(Γ) of the G and 2D bands show that G/Al_(2)O_(3) layers initially exhibit p-type doping, with EF located at ~100 me V below its Dirac charge-neutral point(DCNP). Increasing P_(L) results in effective carrier manipulation and raises E_F above DCNP. No significant internal stress is produced due to P_(L), as inferred from the strain-sensitive G^(*) band of graphene. Raman analysis of three successive cycles reveals hysteretic behavior from cycle to cycle, which is commonly reported to be limited by the type and density of the existing unintentional doping. Because of the ubiquitous nature of unintentional doping in graphene,manipulating it using contactless laser power to realize the desired graphene properties would be one of the best available practical approaches.展开更多
The development of high-performance and cost-efficient catalysts holds great significance in facilitating oxygen reduction reaction(ORR),which is a pivotal process in next-generation energy storage devices,such as alu...The development of high-performance and cost-efficient catalysts holds great significance in facilitating oxygen reduction reaction(ORR),which is a pivotal process in next-generation energy storage devices,such as aluminum-air batteries.Transition metal sulfides have been proposed as promising non-noble metal ORR catalysts.However,achieving platinum(Pt)-comparable activity remains a challenge.Herein,a Co-doping-triggered electronic reconfiguration strategy is reported to tune the charge distribution and coordination state of ZnS nanoparticles anchored on N,S co-doped carbon(ZnS/NSC),thereby optimizing the intermediate adsorption kinetics and promoting ORR activity.The half-wave potential of 0.87 V as well as 100-h continuous durability are obtained by Co-doped ZnS/NSC in alkaline media.In addition,the solid-state aluminum-air battery is further assembled by using Co-doped ZnS/NSC as a cathode catalyst,achieving a maximum peak density of 100 mW·cm^(−2) and discharge duration over 55 h.Density functional theory(DFT)calculations reveal that high electronegative Co-doping is beneficial for the construct of charge-transfer avenue and optimization of intermediate adsorption procedure.This study presents an efficient approach for preparing metal sulfides with high catalytic activity toward ORR in flexible metal-air batteries.展开更多
Hydrogen peroxide(H_(2)O_(2))photosynthesis represents an advanced on-site production method with significant potential for on-demand supply.However,various challenges hinder the efficiency of H_(2)O_(2) yield,includi...Hydrogen peroxide(H_(2)O_(2))photosynthesis represents an advanced on-site production method with significant potential for on-demand supply.However,various challenges hinder the efficiency of H_(2)O_(2) yield,including weak oxygen adsorption capacity,reliance on sacrificial agents,low charge separation and transfer efficiency.In this regard,doping design and defect engineering have emerged as robust and effective strategies for catalyst modification,particularly through their synergistic effects.Additionally,advanced in situ characterization techniques for investigating reaction mechanisms are gaining momentum.Herein,this review provides a comprehensive analysis of the fundamentals and challenges associated with photocatalytic H_(2)O_(2) production,and highlights the advantages of doping and defect engineering.Subsequently,it outlines preparation methods and applications of these strategies.More importantly,it emphasizes the advanced characterization techniques utilized to validate doping and defects,as well as to investigate underlying mechanisms.Finally,the potential prospects and challenges of this reaction are anticipated.This review aims to offer valuable insights for researchers from both experimental and theoretical perspectives.展开更多
Transition metal carbonates(TMCs)hold great potential as high-performance electrodes for alkali metal-ion batteries,owing to multiple-ion storage mechanisms involving conversion process and electrocatalytic reaction.H...Transition metal carbonates(TMCs)hold great potential as high-performance electrodes for alkali metal-ion batteries,owing to multiple-ion storage mechanisms involving conversion process and electrocatalytic reaction.However,they still suffer from inferior electronic conductivity and volume variation during delithiation/lithiation.Heterostructure and heteroatoms doping offer immense promise in enhancing reaction kinetics and structural integrity,which unfortunately have not been achieved in TMCs.Herein,a unique TMCs heterostructure with Ni-doped MnCO_(3)as“core”and Mn-doped NiCO_(3)as“shell”,which is wrapped by graphene(NM@MN/RGO),is achieved by cations differentiation strategy.The formation process for core-shell NM@MN consists of epitaxial growth of NiCO_(3)from MnCO_(3)and synchronously mutual doping,owing to the similar crystal structures but different solubility product constant/formation energy of MnCO_(3)and NiCO_(3).In-situ electrochemical impedance spectroscopy,galvanostatic intermittent titration technique,differential capacity versus voltage plots,theoretical calculation and kinetic analysis reveal the superior electrochemical activity of the NM@MN/RGO to MnCO_(3)/RGO.The NM@MN/RGO shows excellent lithium storage properties(1013.4 mAh·g^(-1)at 0.1 A·g^(-1)and 760 mAh·g^(-1)after 1000 cycles at 2 A·g^(-1))and potassium storage properties(capacity decay rate of 0.114 mAh·g^(-1)per cycle).This work proposes an efficient cation differentiation strategy for constructing advanced TMC electrodes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52172243,52371215)。
文摘All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.
基金National Natural Science Foundation of China (Nos. 42276035, 22309030)Guangdong Basic and Applied Basic Research Foundation (Nos. 2023A1515012589,2020A1515110473)Key Plat Form Programs and Technology Innovation Team Project of Guangdong Provincial Department of Education (Nos. 2019GCZX002, 2020KCXTD011)。
文摘Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.
基金supported by Natural Science Foundation of Shandong Province(Nos.ZR2022YQ42,ZR2021JQ15,ZR2021QE011,ZR2021ZD20,2022GJJLJRC-01)Innovative Team Project of Jinan(No.2021GXRC019)the National Natural Science Foundation of China(Nos.52022037,52202366).
文摘In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.
基金supported by the National Natural Science Foundation of China(Nos.52275395,51935014,and 82072084)the Science and Technology Innovation Program of Hunan Province(No.2023RC3046)+4 种基金the Young Elite Scientists Sponsorship Program byCAST(No.2020QNRC002)the NationalKeyResearchand Development Program of China(No.2023YFB4605800)the Central South University Innovation-Driven Research Programme(No.2023CXQD023)the Jiangxi Provincial Natural Science Foundation of China(No.20224ACB204013)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University.
文摘Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.
基金National Key Research and Development Program of China (2022YFE0206300)National Natural Science Foundation of China (U21A2081,22075074, 22209047)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2024A1515011620)Hunan Provincial Natural Science Foundation of China (2024JJ5068)Foundation of Yuelushan Center for Industrial Innovation (2023YCII0119)Student Innovation Training Program (S202410532594,S202410532357)。
文摘Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effective in enhancing the Na+storage capability,however,a one-step regulation strategy to achieve simultaneous multi-scale structures optimization is highly desirable.Herein,we have systematically investigated the effects of boron doping on hard carbon’s microstructure and interface chemistry.A variety of structure characterizations show that appropriate amount of boron doping can increase the size of closed pores via rearrangement of carbon layers with improved graphitization degree,which provides more Na+storage sites.In-situ Fourier transform infrared spectroscopy/electrochemical impedance spectroscopy (FTIR/EIS) and X-ray photoelectron spectroscopy (XPS) analysis demonstrate the presence of more BC3and less B–C–O structures that result in enhanced ion diffusion kinetics and the formation of inorganic rich and robust SEI,which leads to facilitated charge transfer and excellent rate performance.As a result,the hard carbon anode with optimized boron doping content exhibits enhanced rate and cycling performance.In general,this work unravels the critical role of boron doping in optimizing the pore structure,interface chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced Na+storage performance.
基金financially supported by the Shandong Provincial Natural Science Foundation(ZR2023LFG005)the National Natural Science Foundation of China(Nos.22479161,52274308 and U22B20144)the Fundamental Research Funds for the Central Universities(No.24CX03012A)。
文摘Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability.
基金supported by the National Natural Science Foundation of China(Grant Nos.52372150,12088101,and 11991060)the National Key R&D Program of China(Grant No.2022YFB4200305)。
文摘Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not only challenges the conventional characterization of TeO_(2) as an insulator but also conflicts with the anticipated difficulty in hole doping of TeO_(2) by established chemical trends. Notably, the reported Fermi level of 0.9 eV above the valence band maximum actually suggests that the material is an insulator, contradicting the high hole density obtained by Hall effect measurement. Furthermore, the detected residual Se and the possible reduced elemental Te in the 2D β-TeO_(2) samples introduces complexity, considering that elemental Se, Te, and Te_(1−x)Se_(x) themselves are high-mobility p-type semiconductors. Therefore, doubts regarding the true cause of the p-type conductivity observed in the 2D β-TeO_(2) samples arise. In this Letter, we employ density functional theory calculations to illustrate that TeO_(2), whether in its bulk forms of α-, β-, or γ-TeO_(2), or in the 2D β-TeO_(2) nanosheets, inherently exhibits insulating properties and poses challenges in carrier doping due to its shallow conduction band minimum and deep valence band maximum. Our findings shed light on the insulating properties and doping difficulty of TeO_(2), contrasting with the claimed p-type conductivity in the 2D β-TeO_(2) samples, prompting inquiries into the true origin of the p-type conductivity.
基金supported by the National Natural Science Foundation of China(Nos.52130204,52174376,52202070,51822405)Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120028)+6 种基金TQ Innovation Foundation(No.23-TQ09-02-ZT-01-005)Aeronautical Science Foundation of China(No.20220042053001)Science and Technology Innovation Team Plan of Shaanxi Province(No.2021TD-17)Key R&D Project of Shaanxi Province(No.2024GX-YBXM-220)Thousands Person Plan of Jiangxi Province(JXSQ2020102131)Fundamental Research Funds for the Central Universities(Nos.D5000230348,D5000220057)China Scholarship Council(Nos.202206290133,202306290190).
文摘As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.
基金supported by the Petrochemical Research Institute Foundation(21-CB-09-01)the National Natural Science Foundation of China(22302186,22025205)+1 种基金the China Postdoctoral Science Foundation(2022M713030,2023T160618)the Fundamental Research Funds for the Central Universities(WK2060000058,WK2060000038).
文摘By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability.
基金the National Key Research and Development Program of China(2022YFB4004100)National Natural Science Foundation of China(22272161,22179126)+1 种基金the Jilin Province Science and Technology Development Program(YDZJ202202CXJD011,20240101019JC)Jilin Province major science and technology project(222648GX0105103875)for financial supports.
文摘The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications.
基金National Key R&D Program of China(2023YFB3506600)。
文摘Y_(3)Al_(2)Ga_(3)O_(12):Ce^(3+),Cr^(3+)(YAGG:Ce^(3+),Cr^(3+)),as a persistent luminescent material,has advantages of high initial luminescence intensity and long persistent time,which is promising in persistent luminescent material applications.At present,YAGG:Ce^(3+),Cr^(3+)powders exhibit good persistent performance,but their persistent performance of ceramics still needs to be further improved to meet the new requirements.In this work,(Y_(0.998)Ce_(0.002))_(3)(Al_(1-x)Cr_(x))_(2)Ga_(3)O_(12) ceramics with different Cr^(3+)doping concentrations were prepared by solid-state reaction,including air pre-sintering,hot isostatic pressing(HIP)post-treatment and air annealing,to investigate the effects of Cr^(3+)doping concentration on the microstructure,optical properties and persistent performance of the ceramics.The results showed that as the doping concentration of Cr^(3+)increased from 0.025%to 0.2%(in atom),no significant effect of Cr^(3+)concentration on the morphology of pre-sintered ceramics or HIP post-treatment ceramics was observed,but the in-line transmittance gradually increased while the persistent performance gradually decreased.Among them,YAGG:Ce^(3+),Cr^(3+)ceramics doped with 0.025%Cr^(3+)showed the strongest initial luminescence intensity exceeding 6055 mcd/m^(2) and a persistent time of 1030 min after air pre-sintering combined with HIP post-treatment and air annealing.By optimizing the Cr^(3+)doping concentration and the fabrication process,the persistent luminescence(PersL)performance of the YAGG:Ce^(3+),Cr^(3+)ceramics was obviously improved.
基金supported by the National Natural Science Foundation of China(22075227)the Shaanxi Fundamental Science Research Project for Chemistry and Biology(23JHQ011)。
文摘Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,its long-cycle and rate performance are significantly constrained by the low Na^(+)electronic conductivity of NVPOF.Furthermore,the prevalent self-discharge phenomenon restricts its applicability in practical applications.In this paper,the cathode material Na_(3)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(x=0.16)was synthesized by quantitatively introducing Fe^(3+)into the V-site of NVPOF.The introduction of Fe^(3+)significantly reduced the original bandgap and the energy barrier of NVPOF,as demonstrated through density functional theory calculations(DFT).When material x=0.16 is employed as the cathode material for the sodium-ion battery,the Na^(+)diffusion coefficient is significantly enhanced,exhibiting a lower activation energy of42.93 kJ mol^(-1).Consequently,material x=0.16 exhibits excellent electrochemical performance(rate capacity:57.32 mA h g^(-1)@10 C,cycling capacity:the specific capacity of 101.3 mA h g^(-1)can be stably maintained after 1000 cycles at 1 C current density).It can also achieve a full charge state in only2.39 min at a current density of 10 C while maintaining low energy loss across various stringent self-discharge tests.In addition,the sodium storage mechanism associated with the three-phase transition of Na_(X)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(X=1,2,3)was elucidated by a series of experiments.In conclusion,this study presents a novel approach to multifunctional advanced sodium-ion battery cathode materials.
基金support from Queensland University of Technology,Brisbane,Queensland,Australiafinancial support from ARC Discovery Project(DP210103266).
文摘In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable structure with expanded crystal lattice distance which improves Li ion diffusion kinetics.The dopants have suppressed the growth of primary particles,formed a coating on the surface,and promoted the elongated morphology.Moreover,the mechanical strength of these particles has increased,as confirmed by the nanoindentation test,which can help suppress particle cracking.The detrimental H2-H3 phase transition has been postponed by 90 mV allowing the cathode to operate at a higher voltage.A better cycling stability over 100 cycles with 69%capacity retention has been observed.We believe this work points out a way to improve the cycling performance,Coulombic efficiency and capacity retention in Ni-rich cathodes.
基金the Central Universities(Nos.SWU-KF25028 and SWU-XDJH202314)Natural Science Foundation Project of Chongqing(No.cstc2024ycjh-bgzxm0005)the Opening Project of State Key Laboratory of Solid Lubrication(No.LSL2416)for financial support.We also thank Analytical&Testing Center in Southwest University for SEM test.
文摘Perovskite barium titanate(BaTiO3)demonstrates exceptional dielectric properties as a promising microwave-absorbing(MA)material.Leveraging structural flexibility of perovskites,magnetic components can be incorporated at A/B-sites to enhance MA performance,yet the fundamental disparity in MA mechanisms between A/B-site magnetic doping remains elusive.Herein,nickel-doped BaTiO3 perovskites were systematically synthesized through precise adjustment of the Ba/Ti molar ratio to achieve both A-site(Ni_(x)Ba_(1−x)TiO_(3),N_(x)BTO)and B-site(BaTi_(1−x)Ni_(x)O_(3),BTN^(x)O)substitutions(0≤x≤0.1)via a simple one-step hydrothermal method.Notably,A-site Ni^(2+)substitution in N_(x)BTO induced superior magnetic loss(tanδμ=0.39)attributed to eddy-current dissipation,while B-site doping in BTN^(x)O achieved higher dielectric loss(tanδε=0.49).The N0.1BTO sample exhibited optimal MA performance with a remarkable minimum reflection loss(RLmin)of−44.39 dB and broad effective absorption bandwidth(EAB=8.66 GHz)covering the Ku-band and 67%X-band.Multimodal analysis revealed synergistic interactions among multiple reflection and scattering,multi-polarization relaxation,natural resonance,and eddy currents.In contrast,BTN0.01O demonstrated deeper RLmin(−50.88 dB)but narrower EAB(3.33 GHz)governed by dielectric mechanisms.Structural characterization indicated A-site doping induced lattice distortion,reduced unit-cell volume,and optimized oxygen vacancy distribution,synergistically balancing magneto-dielectric parameters.Conversely,B-site substitution increased oxygen vacancy concentration and carrier mobility while amplifying dielectric fluctuations.The spatial occupation preference of A/B dopants(A-site and B-site)governs lattice symmetry breaking,consequently establishing structure-property relationships and underpinning the material’s tunable dielectric behavior and magnetic phenomena.This work proposes a site-selective doping strategy for designing high-performance perovskite MA materials through magneto-dielectric equilibrium optimization.
基金supported by Taishan Scholar Program of Shandong Province(No.tsqn202306225)Shandong Postdoctoral Science Foundation(SDBX2023025)+2 种基金Leader of Scientific Research Studio Program of Jinan(No.2021GXRC082)University of Jinan Disciplinary Cross-Convergence Construction Projects 2023(Nos.XKJC-202301 and XKJC-202311)Jinan City-School Integration Development Strategy Project(Nos.JNSX2023015 and JNSX2023018).
文摘The rock-salt cubic SnSe compound with multiple valleys and inherent low thermal conductivity is considered to be a promising thermoelectric compound.In this study,heterogeneous Pb atoms were strategically introduced into the lattice of cubic SnSe matrix,synergistically adjusting the thermoelectric transport properties of samples by optimizing hole carrier concentration(n)and suppressing thermal conductivity(κ_(tot)).When the doping content reached 0.08 mol,the peak power factor(PF)at 300 K increased to 20.00μW·cm^(-1)·K^(-2).The growing internal microstrain induced by the differences in atomic size strengthened the phonon scattering and effectively reduced the lattice thermal conductivity(κ_(L)).With further decoupling of the electrical and thermal transport properties,a peak thermoelectric figure of merit(ZT)of 0.82 and an average ZT of 0.42(300-750 K)were achieved in the samples doped with 0.10 mol Pb.These findings highlight the effectiveness of the selected dopants and demonstrate their synergy in improving the performance of thermoelectric materials.
基金supported by the National Natural Science Foundation of China(62204074)the Hebei Natural Science Foundation(F2022201061,F2023201025)+2 种基金the Open bidding for selecting the best candidates of Baoding(2023chuang206)the High-level Talent Research Startup Project of Hebei University(521100221085)the Post-graduate's Innovation Fund Project of Hebei University(HBU2024BS030).
文摘Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.
基金the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 445-9-687。
文摘Manipulating unintentional doping in graphene layers, which is influenced by environmental factors and supporting substrates, is of significant concern for the performance and advancement of graphene-based devices. In this context,laser-induced tuning of charge carriers in graphene facilitates the exploration of graphene's properties in relation to its surroundings and enables laser-assisted functionalization. This has the potential to advance optoelectronic devices that utilize graphene on transparent dielectric substrates, such as Al_(2)O_(3). In this work, laser power(PL) in Raman spectroscopy is used as a convenient contactless tool to manipulate and control unintentional carrier concentration and Fermi level position(EF) in graphene/α-Al_(2)O_(3)(G/Al_(2)O_(3)) under ambient conditions. Samples are annealed at 400℃ for two hours in an(Ar + H_(2)) atmosphere to remove any chemical residues. Analysis of the peak frequency(ω) and full width at half maximum(Γ) of the G and 2D bands show that G/Al_(2)O_(3) layers initially exhibit p-type doping, with EF located at ~100 me V below its Dirac charge-neutral point(DCNP). Increasing P_(L) results in effective carrier manipulation and raises E_F above DCNP. No significant internal stress is produced due to P_(L), as inferred from the strain-sensitive G^(*) band of graphene. Raman analysis of three successive cycles reveals hysteretic behavior from cycle to cycle, which is commonly reported to be limited by the type and density of the existing unintentional doping. Because of the ubiquitous nature of unintentional doping in graphene,manipulating it using contactless laser power to realize the desired graphene properties would be one of the best available practical approaches.
基金financially sponsored by the National Natural Science Foundation of China(Nos.52302039 and 52301043)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110676)+2 种基金Shenzhen Science and Technology Program(Nos.JCYJ20220531095404009,RCBS20221008093057027 and GXWD20231129113217001)the Postdoctoral Research Startup Expenses of Shenzhen(No.NA25501001)Shenzhen Introduce High-level Talents and Scientific Research Startup Founds(No.NA11409005).
文摘The development of high-performance and cost-efficient catalysts holds great significance in facilitating oxygen reduction reaction(ORR),which is a pivotal process in next-generation energy storage devices,such as aluminum-air batteries.Transition metal sulfides have been proposed as promising non-noble metal ORR catalysts.However,achieving platinum(Pt)-comparable activity remains a challenge.Herein,a Co-doping-triggered electronic reconfiguration strategy is reported to tune the charge distribution and coordination state of ZnS nanoparticles anchored on N,S co-doped carbon(ZnS/NSC),thereby optimizing the intermediate adsorption kinetics and promoting ORR activity.The half-wave potential of 0.87 V as well as 100-h continuous durability are obtained by Co-doped ZnS/NSC in alkaline media.In addition,the solid-state aluminum-air battery is further assembled by using Co-doped ZnS/NSC as a cathode catalyst,achieving a maximum peak density of 100 mW·cm^(−2) and discharge duration over 55 h.Density functional theory(DFT)calculations reveal that high electronegative Co-doping is beneficial for the construct of charge-transfer avenue and optimization of intermediate adsorption procedure.This study presents an efficient approach for preparing metal sulfides with high catalytic activity toward ORR in flexible metal-air batteries.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20231342,BK20210867)National Natural Science Foundation of China(22008163)+1 种基金Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE–KF202309)Natural Science Research Project of Higher Education Institutions in Jiangsu Province(21KJB150038).
文摘Hydrogen peroxide(H_(2)O_(2))photosynthesis represents an advanced on-site production method with significant potential for on-demand supply.However,various challenges hinder the efficiency of H_(2)O_(2) yield,including weak oxygen adsorption capacity,reliance on sacrificial agents,low charge separation and transfer efficiency.In this regard,doping design and defect engineering have emerged as robust and effective strategies for catalyst modification,particularly through their synergistic effects.Additionally,advanced in situ characterization techniques for investigating reaction mechanisms are gaining momentum.Herein,this review provides a comprehensive analysis of the fundamentals and challenges associated with photocatalytic H_(2)O_(2) production,and highlights the advantages of doping and defect engineering.Subsequently,it outlines preparation methods and applications of these strategies.More importantly,it emphasizes the advanced characterization techniques utilized to validate doping and defects,as well as to investigate underlying mechanisms.Finally,the potential prospects and challenges of this reaction are anticipated.This review aims to offer valuable insights for researchers from both experimental and theoretical perspectives.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52202371 and 51902102)the Natural Science Foundation of Shandong Province(Nos.ZR202211230173,ZR2020QE066 and ZR2021QE200)+2 种基金the Opening Project of State Key Laboratory of Advanced Technology for Float Glass(No.2020KF08)the SDUT&Zibo City Integration Development Project(No.2021SNPT0045)the fellowship of China Postdoctoral Science Foundation(No.2020M672081).
文摘Transition metal carbonates(TMCs)hold great potential as high-performance electrodes for alkali metal-ion batteries,owing to multiple-ion storage mechanisms involving conversion process and electrocatalytic reaction.However,they still suffer from inferior electronic conductivity and volume variation during delithiation/lithiation.Heterostructure and heteroatoms doping offer immense promise in enhancing reaction kinetics and structural integrity,which unfortunately have not been achieved in TMCs.Herein,a unique TMCs heterostructure with Ni-doped MnCO_(3)as“core”and Mn-doped NiCO_(3)as“shell”,which is wrapped by graphene(NM@MN/RGO),is achieved by cations differentiation strategy.The formation process for core-shell NM@MN consists of epitaxial growth of NiCO_(3)from MnCO_(3)and synchronously mutual doping,owing to the similar crystal structures but different solubility product constant/formation energy of MnCO_(3)and NiCO_(3).In-situ electrochemical impedance spectroscopy,galvanostatic intermittent titration technique,differential capacity versus voltage plots,theoretical calculation and kinetic analysis reveal the superior electrochemical activity of the NM@MN/RGO to MnCO_(3)/RGO.The NM@MN/RGO shows excellent lithium storage properties(1013.4 mAh·g^(-1)at 0.1 A·g^(-1)and 760 mAh·g^(-1)after 1000 cycles at 2 A·g^(-1))and potassium storage properties(capacity decay rate of 0.114 mAh·g^(-1)per cycle).This work proposes an efficient cation differentiation strategy for constructing advanced TMC electrodes.