Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,t...This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal cas...In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.展开更多
Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model...Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.展开更多
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a...This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.展开更多
The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailin...The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated.展开更多
In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical co...In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework.展开更多
To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed va...To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed variation and rule compliance as the evaluation functions and including the ship domain of dynamic/static navigation obstacles and the mechanical characteristics limitation as constraints.The effectiveness of the model for autonomous navigation of USV in the situation of multi-ship encounters and in the complex waters with both dynamic and static obstructions is verified by several groups of simulation work.The simulation results show that the proposed model can realize the autonomous navigation of the underactuated USV under the complex waters.展开更多
Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained i...Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.展开更多
With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter ...With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments.展开更多
To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,whic...To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies.展开更多
The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communica...The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.展开更多
Dear Editor,This letter investigates the problem of multi-dimension formation tracking(MDFT)for the cross-domain unmanned systems,including several interconnected agents,namely,unmanned aerial vehicles(UAVs)and unmann...Dear Editor,This letter investigates the problem of multi-dimension formation tracking(MDFT)for the cross-domain unmanned systems,including several interconnected agents,namely,unmanned aerial vehicles(UAVs)and unmanned surface vehicles(USVs).We assume that each agent suffers from by the mixed constraints on its velocity,control input and Euler angle.Solving the MDFT problem implies that 1)The virtual state of each USV is determined in the earth coordinate by expanding its 2D work space to the 3D space.展开更多
Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynam...Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
文摘This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金supported in part the National Key Research and Development Program of China(2021YFC2902703)Open Foundation of State Key Laboratory of Process Automation in Mining&Metallurgy/Beijing Key Laboratory of Process Automation in Mining&Metallurgy(BGRIMM-KZSKL-2022-6)the National Natural Science Foundation of China(62173078,61873049).
文摘In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.
基金supported by the National Natural Science Foundation of China(62473020).
文摘Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.
基金supported by the National Nature Science Foundation of China(62073194)the Natural Science Foundation of Shandong Province of China(ZR2023MF028)the Taishan Scholars Program of Shandong Province(tsqn202312008)
文摘This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.
基金Supported by National Natural Science Foundation of China(Grant Nos.52172383,51805081)Jiangsu Provincial Postgraduate Research&Practice Innovation Program(Grant No.KYCX22_0196)。
文摘The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated.
基金supported in part by the National Natural Science Foundation of China(62133013,U22A2060)Dreams Foundation of Jianghuai Advance Technology Center(2023-ZM01Z024)。
文摘In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework.
基金the National Natural Science Foundation of China(No.51879119)the Key Projects of National Key Research and Development Program(No.2021YFB390150)+1 种基金the Natural Science Project of Fujian Province(Nos.2022J01323,2021J01822 and 2020J01660)the Fuzhou-Xiamen-Quanzhou Independent Innovation Region Cooperated Special Foundation(No.3502ZCQXT2021007)。
文摘To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed variation and rule compliance as the evaluation functions and including the ship domain of dynamic/static navigation obstacles and the mechanical characteristics limitation as constraints.The effectiveness of the model for autonomous navigation of USV in the situation of multi-ship encounters and in the complex waters with both dynamic and static obstructions is verified by several groups of simulation work.The simulation results show that the proposed model can realize the autonomous navigation of the underactuated USV under the complex waters.
基金supported by the National Natural Science Foundation of China(62303095)the Natural Science Foundation of Sichuan Province(2023NSFSC0872).
文摘Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.
基金co-supported by the National Natural Science Foundation of China(No.52477063)the National Key Research and Development Program of China(No.2023YFF0719100)。
文摘With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments.
文摘To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies.
基金Supported by the National Key Research and Development Program of China(Grant No.2023YFE0204700)the National Natural Science Foundation of China(Grant Nos.52472402 and 52302469)+7 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012327 and 2024A1515010449)the research grant of the University of Macao(Grant No.MYRG GRG2023-00235-FST-UMDF)Shandong Provincial Natural Science Foundation(Grant No.ZR2023ME133)the Fundamental Research Funds for the Central Universities(Grant No.N2403012)the Science and Technology Development Fund of Macao SAR(Grant No.0091/2023/AMJ)the China Postdoctoral Science Foundation(Grant Nos.2023M740538 and AM2024003)the Zhuhai Science and Technology Innovation Bureau(Grant No.2220004003107)the Yunfu Science and Technology Project(Grant No.2024090202).
文摘The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.
基金supported in part by the National Natural Science Foundation of China(62073301,62373162,62473349,U24A20268,62233007)the Shenzhen Science and Technology Program(JCYJ20240813114007010).
文摘Dear Editor,This letter investigates the problem of multi-dimension formation tracking(MDFT)for the cross-domain unmanned systems,including several interconnected agents,namely,unmanned aerial vehicles(UAVs)and unmanned surface vehicles(USVs).We assume that each agent suffers from by the mixed constraints on its velocity,control input and Euler angle.Solving the MDFT problem implies that 1)The virtual state of each USV is determined in the earth coordinate by expanding its 2D work space to the 3D space.
基金Supported by National Natural Science Foundation of China(Grant Nos.52402497,52025121 and 52002066)Young Scientists Project and General Project of Applied Basic Research in Yunnan Province(Grant Nos.202501AT070296,202401AU070196)+1 种基金The Key Laboratory of Modern Agricultural Engineering of Ordinary Colleges and Universities of Education Department of Autonomous Region(Grant No.TDNG2023108)Jiangsu Provincial Achievements Transformation Project(Grant No.BA2018023).
文摘Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.