A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is pro- posed to produce subwavelength focusing and beam bending at optical frequencies. The incident light pa...A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is pro- posed to produce subwavelength focusing and beam bending at optical frequencies. The incident light passes through the metal slits in the form of surface plasmon polaritons (SPPs) ,and then scatters into radiation fields. Numerical simulations using finite-difference time-domain (FDTD) method show that the transmitted fields through the design example can gener- ate light focusing and deflection by altering the refractive index of the coupled nanocavity. The simulation results indicate that the focal spot is beyond the diffraction limit. Light impinges on the surface at an angle to the optical axis will add an extra planar phase front that interferes with the asymmetric phase front of the plasmonic lens, leading to a larger bending angle off the axial direction. The advantages of the proposed plasmonic lens are smaller device size and ease of fabrication. Such geometries offer the potential to be controlled by using nano-positior!i0g systems for applications in dynamic beam shaping and scanning on the nanoscale.展开更多
The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficien...The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.展开更多
To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ...To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.展开更多
Luminosity outbursts of FU Ori-type objects(FUors)allow us to observe in the gas the molecules that are typically present in the ice in protoplanetary disks.In particular,the fraction of deuterated water,which is usua...Luminosity outbursts of FU Ori-type objects(FUors)allow us to observe in the gas the molecules that are typically present in the ice in protoplanetary disks.In particular,the fraction of deuterated water,which is usually mostly frozen in the midplane of a protoplanetary disk,has been measured for the first time in the gas of the disk around FUor V883 Ori.We test the hypothesis that the observed high HDO/H_(2)O ratio in the V883 Ori protoplanetary disk can be explained by luminosity outbursts of different amplitude,including a series of two consecutive outbursts.Using the ANDES astrochemical code,we modeled the distributions of water and deuterated water abundances under the action of luminosity outbursts of different amplitudes(from 400 to10,000 L_(⊙))and at different stellar luminosities at the pre-outburst stage.We show that the best agreement with the observed HDO/H_(2)O profile is obtained for outburst amplitudes of 2000 and 10,000 L_(⊙),while the observed bolometric luminosity of V883 Ori does not exceed 400 L_(⊙).We discuss possible reasons for this discrepancy,including the presence of past luminosity outbursts,the age of the star,and the influence of additional heating mechanisms in the midplane of the protoplanetary disk.We also consider how the high observed HDO/H_(2)O ratio may be related to the evolution of the chemical composition of the ice in the protoplanetary disk and the chemical processes activated under outburst conditions.展开更多
This study explores the dynamics of charged Hayward black holes,focusing on the effects of electric charge and the length factor on accretion disk characteristics.Our results show that increasing both parameters reduc...This study explores the dynamics of charged Hayward black holes,focusing on the effects of electric charge and the length factor on accretion disk characteristics.Our results show that increasing both parameters reduces the size of the event horizon and innermost stable circular orbits(ISCO)radius,with the electric charge exerting a more pronounced influence.Additionally,the length factor and electric charge can effectively replicate the spin of a Kerr black hole.Both parameters also affect the electromagnetic radiation emitted from the accretion disk,increasing the flux,temperature,and radiative efficiency.The peak radiation occurs in the soft x-ray band,with higher values of electric charge and length factor enhancing disk luminosity and shifting the peak to higher frequencies.These findings can offer valuable insights into the accretion processes around black holes and their observable signatures,particularly in x-ray astronomy.展开更多
This study investigates the heat transfer and flow dynamics of a ternary hybrid nanofluid comprising alumina,copper,and silica/titania nanoparticles dispersed in water.The analysis considers the effects of suction,mag...This study investigates the heat transfer and flow dynamics of a ternary hybrid nanofluid comprising alumina,copper,and silica/titania nanoparticles dispersed in water.The analysis considers the effects of suction,magnetic field,and Joule heating over a permeable shrinking disk.Amathematicalmodel is developed and converted to a systemof differential equations using similarity transformation which then,solved numerically using the bvp4c solver in Matlab software.The study introduces a novel comparative analysis of alumina-copper-silica and alumina-coppertitania nanofluids,revealing distinct thermal conductivity behaviors and identifying critical suction values necessary for flow stabilization.Dual solutions are found within a specific range of parameters such that the minimum required suction values for flow stability,with S_(c)=1.2457 for alumina-copper-silica/water and S_(c)=1.2351 for alumina-coppertitania/water.The results indicate that increasing suction by 1%enhances the skin friction coefficient by up to 4.17%and improves heat transfer efficiency by approximately 1%,highlighting its crucial role in stabilizing the opposing flow induced by the shrinking disk.Additionally,the inclusion of 1%silica nanoparticles reduces both skin friction and heat transfer rate by approximately 0.28%and 0.85%,respectively,while 1%titania concentration increases skin friction by 3.02%but results in a slight heat transfer loss of up to 0.61%.These findings confirm the superior thermal performance of alumina-copper-titania/water,making it a promising candidate for enhanced cooling systems,energy-efficient heat exchangers,and industrial thermal management applications.展开更多
This paper discusses the model of the boundary layer(BL)flow and the heat transfer characteristics of hybrid nanofluid(HNF)over shrinking/stretching disks.In addition,the thermal radiation and the impact of velocity a...This paper discusses the model of the boundary layer(BL)flow and the heat transfer characteristics of hybrid nanofluid(HNF)over shrinking/stretching disks.In addition,the thermal radiation and the impact of velocity and thermal slip boundary conditions are also examined.The considered hybrid nano-fluid contains silver(Ag)and iron oxide(Fe_(3)O_(4))nanoparticles dispersed in the water to prepare the Ag-Fe_(3)O_(4)/water-based hybrid nanofluid.The requisite posited partial differential equations model is converted to ordinary differential equations using similarity transformations.For a numerical solution,the shooting method in Maple is employed.Moreover,the duality in solutions is achieved for both cases of the disk(stretching(λ>0)and shrinking(λ<0)).At the same time,a unique solution is observed for λ=0.No solution is found for them at λ<λ_(c),whereas the solutions are split at the λ=λ_(c).Besides,the value of the λ_(c) is dependent on the φ_(hnf).Meanwhile,the values of f″(0)and -θ′(0)intensified with increasing φ_(hnf).Stability analysis has been applied using bvp4c in MATLAB software due to a dual solution.Furthermore,analysis shows that the first solution is stable and feasible physically.For the slip parameters,an increase in the velocity slip parameter increases the velocity and shear stress profiles while increasing the temperature profile in the first solutions.While the rise in thermal slip parameter reduces the temperature profile nanoparticle volume fractions increase it.展开更多
Stars can form and evolve within gaseous disks around active galactic nuclei(AGNs).In the sub-parsec region of disks around~10~8M_(☉)black holes,stars accrete rapidly,reaching■200 M_(☉)and settling into a quasi-ste...Stars can form and evolve within gaseous disks around active galactic nuclei(AGNs).In the sub-parsec region of disks around~10~8M_(☉)black holes,stars accrete rapidly,reaching■200 M_(☉)and settling into a quasi-steady state in which accretion balances wind-driven mass loss.Within this environment,their ultimate fate depends critically on the radiative-zone diffusion coefficient(Dmix),which encapsulates various mixing processes and governs chemical transport between surface and core.Using the MESA stellar evolution code,we simulate AGN stars across a range of mixing efficiencies.We find a critical threshold floor value D_(mix,min)≈1010 cm~2 s^(-1)that separates two distinct fates:1."Immortal stars"—when mixing is over-efficient(D_(mix,min)■10^(10)cm~2 s^(-1)),rapid hydrogen replenishment sustains core hydrogen burning,maintains main-sequence equilibrium,rendering the star effectively“immortal.”2."Metamorphic stars"—when mixing is merely efficient(D_(mix,min)<1010 cm~2 s^(-1)),stars exhaust core hydrogen,evolve off-main-sequence,shed mass to≈15 M_(☉),and produce super-solar a-abundances consistent with AGN observations.We conclude that maintaining a mixing floor below this threshold is sufficient to avoid immortality,as flux-induced extra mixing can be effectively modeled via constant floor values.Our estimates provide a foundation for future work on disk enrichment and stellar evolution.展开更多
Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rat...Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61203211)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.13KJB140006)the Foundation for Outstanding Young Teachers of Nanjing University of Information Science&Technology,China(Grant No.20110423)
文摘A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is pro- posed to produce subwavelength focusing and beam bending at optical frequencies. The incident light passes through the metal slits in the form of surface plasmon polaritons (SPPs) ,and then scatters into radiation fields. Numerical simulations using finite-difference time-domain (FDTD) method show that the transmitted fields through the design example can gener- ate light focusing and deflection by altering the refractive index of the coupled nanocavity. The simulation results indicate that the focal spot is beyond the diffraction limit. Light impinges on the surface at an angle to the optical axis will add an extra planar phase front that interferes with the asymmetric phase front of the plasmonic lens, leading to a larger bending angle off the axial direction. The advantages of the proposed plasmonic lens are smaller device size and ease of fabrication. Such geometries offer the potential to be controlled by using nano-positior!i0g systems for applications in dynamic beam shaping and scanning on the nanoscale.
基金the National Natural Science Foundation of China(No.52275378)the National Key Laboratory for Precision Hot Processing of Metals(6142909200208)。
文摘The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.
基金supported by the National Major Science and Technology Project,China(No.J2019-Ⅳ-0007-0075)the Fundamental Research Funds for the Central Universities,China(No.JKF-20240036)。
文摘To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.
基金supported by the Ministry of Science and Higher Education of the Russian Federation,State Assignment No.GZ0110/23-10-IF。
文摘Luminosity outbursts of FU Ori-type objects(FUors)allow us to observe in the gas the molecules that are typically present in the ice in protoplanetary disks.In particular,the fraction of deuterated water,which is usually mostly frozen in the midplane of a protoplanetary disk,has been measured for the first time in the gas of the disk around FUor V883 Ori.We test the hypothesis that the observed high HDO/H_(2)O ratio in the V883 Ori protoplanetary disk can be explained by luminosity outbursts of different amplitude,including a series of two consecutive outbursts.Using the ANDES astrochemical code,we modeled the distributions of water and deuterated water abundances under the action of luminosity outbursts of different amplitudes(from 400 to10,000 L_(⊙))and at different stellar luminosities at the pre-outburst stage.We show that the best agreement with the observed HDO/H_(2)O profile is obtained for outburst amplitudes of 2000 and 10,000 L_(⊙),while the observed bolometric luminosity of V883 Ori does not exceed 400 L_(⊙).We discuss possible reasons for this discrepancy,including the presence of past luminosity outbursts,the age of the star,and the influence of additional heating mechanisms in the midplane of the protoplanetary disk.We also consider how the high observed HDO/H_(2)O ratio may be related to the evolution of the chemical composition of the ice in the protoplanetary disk and the chemical processes activated under outburst conditions.
文摘This study explores the dynamics of charged Hayward black holes,focusing on the effects of electric charge and the length factor on accretion disk characteristics.Our results show that increasing both parameters reduces the size of the event horizon and innermost stable circular orbits(ISCO)radius,with the electric charge exerting a more pronounced influence.Additionally,the length factor and electric charge can effectively replicate the spin of a Kerr black hole.Both parameters also affect the electromagnetic radiation emitted from the accretion disk,increasing the flux,temperature,and radiative efficiency.The peak radiation occurs in the soft x-ray band,with higher values of electric charge and length factor enhancing disk luminosity and shifting the peak to higher frequencies.These findings can offer valuable insights into the accretion processes around black holes and their observable signatures,particularly in x-ray astronomy.
基金funded by Universiti Teknikal Malaysia Melaka,through Fakulti Teknologi dan Kejuruteraan Mekanikal(FTKM)’s publication fund-K23003.
文摘This study investigates the heat transfer and flow dynamics of a ternary hybrid nanofluid comprising alumina,copper,and silica/titania nanoparticles dispersed in water.The analysis considers the effects of suction,magnetic field,and Joule heating over a permeable shrinking disk.Amathematicalmodel is developed and converted to a systemof differential equations using similarity transformation which then,solved numerically using the bvp4c solver in Matlab software.The study introduces a novel comparative analysis of alumina-copper-silica and alumina-coppertitania nanofluids,revealing distinct thermal conductivity behaviors and identifying critical suction values necessary for flow stabilization.Dual solutions are found within a specific range of parameters such that the minimum required suction values for flow stability,with S_(c)=1.2457 for alumina-copper-silica/water and S_(c)=1.2351 for alumina-coppertitania/water.The results indicate that increasing suction by 1%enhances the skin friction coefficient by up to 4.17%and improves heat transfer efficiency by approximately 1%,highlighting its crucial role in stabilizing the opposing flow induced by the shrinking disk.Additionally,the inclusion of 1%silica nanoparticles reduces both skin friction and heat transfer rate by approximately 0.28%and 0.85%,respectively,while 1%titania concentration increases skin friction by 3.02%but results in a slight heat transfer loss of up to 0.61%.These findings confirm the superior thermal performance of alumina-copper-titania/water,making it a promising candidate for enhanced cooling systems,energy-efficient heat exchangers,and industrial thermal management applications.
基金the Researchers Supporting Project number(RSPD2025R997),King Saud University,Riyadh,Saudi Arabia.
文摘This paper discusses the model of the boundary layer(BL)flow and the heat transfer characteristics of hybrid nanofluid(HNF)over shrinking/stretching disks.In addition,the thermal radiation and the impact of velocity and thermal slip boundary conditions are also examined.The considered hybrid nano-fluid contains silver(Ag)and iron oxide(Fe_(3)O_(4))nanoparticles dispersed in the water to prepare the Ag-Fe_(3)O_(4)/water-based hybrid nanofluid.The requisite posited partial differential equations model is converted to ordinary differential equations using similarity transformations.For a numerical solution,the shooting method in Maple is employed.Moreover,the duality in solutions is achieved for both cases of the disk(stretching(λ>0)and shrinking(λ<0)).At the same time,a unique solution is observed for λ=0.No solution is found for them at λ<λ_(c),whereas the solutions are split at the λ=λ_(c).Besides,the value of the λ_(c) is dependent on the φ_(hnf).Meanwhile,the values of f″(0)and -θ′(0)intensified with increasing φ_(hnf).Stability analysis has been applied using bvp4c in MATLAB software due to a dual solution.Furthermore,analysis shows that the first solution is stable and feasible physically.For the slip parameters,an increase in the velocity slip parameter increases the velocity and shear stress profiles while increasing the temperature profile in the first solutions.While the rise in thermal slip parameter reduces the temperature profile nanoparticle volume fractions increase it.
文摘Stars can form and evolve within gaseous disks around active galactic nuclei(AGNs).In the sub-parsec region of disks around~10~8M_(☉)black holes,stars accrete rapidly,reaching■200 M_(☉)and settling into a quasi-steady state in which accretion balances wind-driven mass loss.Within this environment,their ultimate fate depends critically on the radiative-zone diffusion coefficient(Dmix),which encapsulates various mixing processes and governs chemical transport between surface and core.Using the MESA stellar evolution code,we simulate AGN stars across a range of mixing efficiencies.We find a critical threshold floor value D_(mix,min)≈1010 cm~2 s^(-1)that separates two distinct fates:1."Immortal stars"—when mixing is over-efficient(D_(mix,min)■10^(10)cm~2 s^(-1)),rapid hydrogen replenishment sustains core hydrogen burning,maintains main-sequence equilibrium,rendering the star effectively“immortal.”2."Metamorphic stars"—when mixing is merely efficient(D_(mix,min)<1010 cm~2 s^(-1)),stars exhaust core hydrogen,evolve off-main-sequence,shed mass to≈15 M_(☉),and produce super-solar a-abundances consistent with AGN observations.We conclude that maintaining a mixing floor below this threshold is sufficient to avoid immortality,as flux-induced extra mixing can be effectively modeled via constant floor values.Our estimates provide a foundation for future work on disk enrichment and stellar evolution.
基金supported by the National Natural Science Foundation of China(No.52175269)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003)+2 种基金Science and Technology Research Project of Education Department of Jilin Province(JJKH20231146KJ,JJKH20241262KJ)Project ZR2024ME104 supported by Shandong Provincial Natural Science FoundationChina Postdoctoral Science Foundation(No.2024M751086).
文摘Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.
基金supported by the National Basic Research Development Program(973)of China(No.2012CB114603)Special Fund of Shandong Province for High Level Overseas TalentsChina(No.72019)