期刊文献+
共找到521,003篇文章
< 1 2 250 >
每页显示 20 50 100
Cloud Service Security Adaptive Target Detection Algorithm Based on Bio-Inspired Performance Evaluation Process Algebra 被引量:1
1
作者 ZHAO Guosheng QU Xiaofeng +2 位作者 LIAO Yuting WANG Tiantian ZHANG Jingting 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第3期185-193,共9页
Combining the principle of antibody concentration with the idea of biological evolution, this paper proposes an adaptive target detection algorithm for cloud service security based on Bio-Inspired Performance Evaluati... Combining the principle of antibody concentration with the idea of biological evolution, this paper proposes an adaptive target detection algorithm for cloud service security based on Bio-Inspired Performance Evaluation Process Algebra(Bio-PEPA). The formal modelling of cloud services is formally modded by Bio-PEPA and the modules are transformed between cloud service internal structures and various components. Then, the security adaptive target detection algorithm of cloud service is divided into two processes, the short-term optimal action selection process which selects the current optimal detective action through the iterative operation of the expected function and the adaptive function, and the long-term detective strategy realized through the updates and eliminations of action planning table. The combination of the two processes reflects the self-adaptability of cloud service system to target detection. The simulating test detects three different kinds of security risks and then analyzes the relationship between the numbers of components with time in the service process. The performance of this method is compared with random detection method and three anomaly detection methods by the cloud service detection experiment. The detection time of this method is 50.1% of three kinds of detection methods and 86.3% of the random detection method. The service success rate is about 15% higher than that of random detection methods. The experimental results show that the algorithm has good time performance and high detection hit rate. 展开更多
关键词 cloud service SECURITY BIO-INSPIRED Performance Evaluation Process ALGEBRA (Bio-PEPA) ADAPTIVE detection biological immunity EVOLUTIONARY mechanism
原文传递
EFRED: Enhancement of Fair Random Early Detection Algorithm
2
作者 Muntadher Abdulkareem Kassem Akil +1 位作者 Ali Kalakech Seifedine Kadry 《International Journal of Communications, Network and System Sciences》 2015年第7期282-294,共13页
Quality of Service (QoS) generally refers to measurable like latency and throughput, things that directly affect the user experience. Queuing (the most popular QoS tool) involves choosing the packets to be sent based ... Quality of Service (QoS) generally refers to measurable like latency and throughput, things that directly affect the user experience. Queuing (the most popular QoS tool) involves choosing the packets to be sent based on something other than arrival time. The Active queue management is important subject to manage this queue to increase the effectiveness of Transmission Control Protocol networks. Active queue management (AQM) is an effective means to enhance congestion control, and to achieve trade-off between link utilization and delay. The de facto standard, Random Early Detection (RED), and many of its variants employ queue length as a congestion indicator to trigger packet dropping. One of these enhancements of RED is FRED or Fair Random Early Detection attempts to deal with a fundamental aspect of RED in that it imposes the same loss rate on all flows, regardless of their bandwidths. FRED also uses per-flow active accounting, and tracks the state of active flows. FRED protects fragile flows by deterministically accepting flows from low bandwidth connections and fixes several shortcomings of RED by computing queue length during both arrival and departure of the packet. Unlike FRED, we propose a new scheme that used hazard rate estimated packet dropping function in FRED. We call this new scheme Enhancement Fair Random Early Detection. The key idea is that, with EFRED Scheme change packet dropping function, to get packet dropping less than RED and other AQM algorithms like ARED, REM, RED, etc. Simulations demonstrate that EFRED achieves a more stable throughput and performs better than current active queue management algorithms due to decrease the packets loss percentage and lowest in queuing delay, end to end delay and delay variation (JITTER). 展开更多
关键词 QoS Quality of Service Active QUEUE Management EFRED algorithm FAIR RANDOM EARLY detection CONGESTION Control
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
3
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Change-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
Survey and Proposal of an Adaptive Anomaly Detection Algorithm for Periodic Data Streams 被引量:2
4
作者 Zirije Hasani Samedin Krrabaj 《Journal of Computer and Communications》 2019年第8期33-55,共23页
Real-time anomaly detection of massive data streams is an important research topic nowadays due to the fact that a lot of data is generated in continuous temporal processes. There is a broad research area, covering ma... Real-time anomaly detection of massive data streams is an important research topic nowadays due to the fact that a lot of data is generated in continuous temporal processes. There is a broad research area, covering mathematical, statistical, information theory methodologies for anomaly detection. It addresses various problems in a lot of domains such as health, education, finance, government, etc. In this paper, we analyze the state-of-the-art of data streams anomaly detection techniques and algorithms for anomaly detection in data streams (time series data). Critically surveying the techniques’ performances under the challenge of real-time anomaly detection of massive high-velocity streams, we conclude that the modeling of the normal behavior of the stream is a suitable approach. We evaluate Holt-Winters (HW), Taylor’s Double Holt-Winters (TDHW), Hierarchical temporal memory (HTM), Moving Average (MA), Autoregressive integrated moving average (ARIMA) forecasting models, etc. Holt-Winters (HW) and Taylor’s Double Holt-Winters (TDHW) forecasting models are used to predict the normal behavior of the periodic streams, and to detect anomalies when the deviations of observed and predicted values exceeded some predefined measures. In this work, we propose an enhancement of this approach and give a short description about the algorithms and then they are categorized by type of pre-diction as: predictive and non-predictive algorithms. We implement the Genetic Algorithm (GA) to periodically optimize HW and TDHW smoothing parameters in addition to the two sliding windows parameters that improve Hyndman’s MASE measure of deviation, and value of the threshold parameter that defines no anomaly confidence interval [1]. We also propose a new optimization function based on the input training datasets with the annotated anomaly intervals, in order to detect the right anomalies and minimize the number of false ones. The proposed method is evaluated on the known anomaly detection benchmarks NUMENTA and Yahoo datasets with annotated anomalies and real log data generated by the National education information system (NEIS)1 in Macedonia. 展开更多
关键词 ANOMALY detection PERIODIC Time Series HOLT Winters algorithm Genetic algorithm GA MASE HTM
暂未订购
YOLO-SDW: Traffic Sign Detection Algorithm Based on YOLOv8s Skip Connection and Dynamic Convolution
5
作者 Qing Guo Juwei Zhang Bingyi Ren 《Computers, Materials & Continua》 2026年第1期1433-1452,共20页
Traffic sign detection is an important part of autonomous driving,and its recognition accuracy and speed are directly related to road traffic safety.Although convolutional neural networks(CNNs)have made certain breakt... Traffic sign detection is an important part of autonomous driving,and its recognition accuracy and speed are directly related to road traffic safety.Although convolutional neural networks(CNNs)have made certain breakthroughs in this field,in the face of complex scenes,such as image blur and target occlusion,the traffic sign detection continues to exhibit limited accuracy,accompanied by false positives and missed detections.To address the above problems,a traffic sign detection algorithm,You Only Look Once-based Skip Dynamic Way(YOLO-SDW)based on You Only Look Once version 8 small(YOLOv8s),is proposed.Firstly,a Skip Connection Reconstruction(SCR)module is introduced to efficiently integrate fine-grained feature information and enhance the detection accuracy of the algorithm in complex scenes.Secondly,a C2f module based on Dynamic Snake Convolution(C2f-DySnake)is proposed to dynamically adjust the receptive field information,improve the algorithm’s feature extraction ability for blurred or occluded targets,and reduce the occurrence of false detections and missed detections.Finally,the Wise Powerful IoU v2(WPIoUv2)loss function is proposed to further improve the detection accuracy of the algorithm.Experimental results show that the average precision mAP@0.5 of YOLO-SDW on the TT100K dataset is 89.2%,and mAP@0.5:0.95 is 68.5%,which is 4%and 3.3%higher than the YOLOv8s baseline,respectively.YOLO-SDW ensures real-time performance while having higher accuracy. 展开更多
关键词 Traffic sign detection YOLOv8 object detection deep learning
在线阅读 下载PDF
YOLO-based lightweight traffic sign detection algorithm and mobile deployment 被引量:1
6
作者 WU Yaqin ZHANG Tao +2 位作者 NIU Jianjun CHANG Yan LIU Ganjun 《Optoelectronics Letters》 2025年第4期249-256,共8页
This paper proposes a lightweight traffic sign detection system based on you only look once(YOLO).Firstly,the classification to fusion(C2f)structure is integrated into the backbone network,employing deformable convolu... This paper proposes a lightweight traffic sign detection system based on you only look once(YOLO).Firstly,the classification to fusion(C2f)structure is integrated into the backbone network,employing deformable convolution and bi-directional feature pyramid network(BiFPN)_Concat to improve the adaptability of the network.Secondly,the simple attention module(SimAm)is embedded to prioritize key features and reduce the complexity of the model after the C2f layer at the end of the backbone network.Next,the focal efficient intersection over union(EloU)is introduced to adjust the weights of challenging samples.Finally,we accomplish the design and deployment for the mobile app.The results demonstrate improvements,with the F1 score of 0.8987,mean average precision(mAP)@0.5 of 98.8%,mAP@0.5:0.95 of 75.6%,and the detection speed of 50 frames per second(FPS). 展开更多
关键词 c f layer simple attention module simam reduce complexity traffic sign detection prioritize key features backbone networkemploying classification backbone networknextthe
原文传递
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
7
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
Continuity and integrity allocation over operational exposure time for ARAIM fault detection algorithm
8
作者 Jingtian DU Hongxia WANG +2 位作者 Kun FANG Zhipeng WANG Yanbo ZHU 《Chinese Journal of Aeronautics》 2025年第11期329-345,共17页
The snapshot Fault Detection(FD)algorithm of Advanced Receiver Autonomous Integrity Monitoring(ARAIM)necessitates the allocation of continuity and integrity risk requirements from the operational exposure time level t... The snapshot Fault Detection(FD)algorithm of Advanced Receiver Autonomous Integrity Monitoring(ARAIM)necessitates the allocation of continuity and integrity risk requirements from the operational exposure time level to the single epoch level.Current studies primarily focus on finding a conservative Number of Effective Samples(NES)as a risk mapping factor.However,considering that the NES varies with the observation environment and the type of the fault mode,applying a fixed NES can constrain the performance of the algorithm.To address this issue,the continuity and integrity risks over the operational exposure time are analyzed and bounded based on all epochs within the exposure time.A more adaptable method for continuity and integrity budget allocation over the operational exposure time is presented,capable of monitoring the continuity and integrity risks over the recent operational exposure time in real time,and dynamically adjusting the allocation values based on the current observation environment.Simulation results demonstrate that,compared with the allocation method based on a fixed NES,ARAIM based on the proposed allocation method exhibits superior performance in terms of the availability.At an FD execution frequency equal to the required Time-To-Alert(TTA),the dual-constellation H-ARAIM provides 100%of the global coverage with 99.5%availability of the RNP 0.1 service,and the dual-constellation V-ARAIM provides 86.38%of the global coverage with 99.5%availability of the LPV-200 service. 展开更多
关键词 Air navigation Advanced Receiver Autonomous Integrity Monitoring(ARAIM) AVAILABILITY CONTINUITY Fault detection(FD) INTEGRITY Protectionl level Temporary correlation
原文传递
DAFPN-YOLO: An Improved UAV-Based Object Detection Algorithm Based on YOLOv8s
9
作者 Honglin Wang Yaolong Zhang Cheng Zhu 《Computers, Materials & Continua》 2025年第5期1929-1949,共21页
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp... UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks. 展开更多
关键词 YOLOv8 UAV-based object detection AFPN small-object detection head SPPELAN DualConv loss function
在线阅读 下载PDF
A Detection Algorithm for Two-Wheeled Vehicles in Complex Scenarios Based on Semi-Supervised Learning
10
作者 Mingen Zhong Kaibo Yang +4 位作者 Ziji Xiao Jiawei Tan Kang Fan Zhiying Deng Mengli Zhou 《Computers, Materials & Continua》 2025年第7期1055-1071,共17页
With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness... With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance. 展开更多
关键词 Two wheeled vehicles illegal behavior detection object detection semi supervised learning deep learning TRANSFORMER convolutional neural network
在线阅读 下载PDF
Multi-scale fire target detection algorithm using YOLO-fire
11
作者 FAN Weiqiang DING Jiayan +3 位作者 PENG Bin LIU Dong GAO Shuoheng JIA Changzhuo 《Journal of Measurement Science and Instrumentation》 2025年第4期625-636,共12页
Accurate and real-time fire detection is crucial for industrial production and daily life.However,the variable form of fire and the significant differences in visual characteristics across its different stages pose gr... Accurate and real-time fire detection is crucial for industrial production and daily life.However,the variable form of fire and the significant differences in visual characteristics across its different stages pose great challenges to precise fire prevention and control.To address this issue,a multi-scale fire target detection algorithm using YOLO-fire was proposed by improving the YOLOv8 model.This model introduced new layer structures and attention mechanism,replaced new feature fusion modules and loss functions.By introducing a small-target detection P2 layer,the model’s ability to detect early-stage fires is improved.The coordinate attention mechanism is integrated into the layer structures of multi-scale target detection,enhancing the capture of target location information and channel relationships,thereby focusing more on the target regions.The Neck network structure was optimized by adopting a BiFPN_F strategy for different feature layers,which strengthened the cross-scale representation of fire features and controlled the parameter count of the designed model.The WIoU loss function was employed to optimize the regression process,improving fire source localization accuracy in complex scenarios,enhancing model robustness,and increasing detection precision.Experimental results on fire datasets demonstrated that YOLO-fire could effectively detect multi-scale fire targets in various scenarios.Compared to the baseline model(YOLOv8n),YOLO-fire achieves improvements of 1.37%in accuracy,1.25%in mAP50-95,and 0.35%in F1-score,while reducing parameters by 3.79%.Furthermore,compared to current mainstream target detection algorithms,YOLO-Fire achieved optimal detection performance while reducing network parameters and computational complexity.This research provided effective technical support for fire safety prevention and control in related fields. 展开更多
关键词 fire detection early-stage fire feature fusion attention mechanism loss function network structure YOLOv8
在线阅读 下载PDF
CMS-YOLO:An Automated Multi-Category Brain Tumor Detection Algorithm Based on Improved YOLOv10s
12
作者 Li Li Xiao Wang +3 位作者 Ran Ding Linlin Luo Qinmu Wu Zhiqin He 《Computers, Materials & Continua》 2025年第10期1287-1309,共23页
Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues,and their appearance may lead to a series of complex symptoms.However,current methods struggle to capture deeper brai... Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues,and their appearance may lead to a series of complex symptoms.However,current methods struggle to capture deeper brain tumor image feature information due to the variations in brain tumor morphology,size,and complex background,resulting in low detection accuracy,high rate of misdiagnosis and underdiagnosis,and challenges in meeting clinical needs.Therefore,this paper proposes the CMS-YOLO network model for multi-category brain tumor detection,which is based on the You Only Look Once version 10(YOLOv10s)algorithm.This model innovatively integrates the Convolutional Medical UNet extended block(CMUNeXt Block)to design a brand-new CSP Bottleneck with 2 convolutions(C2f)structure,which significantly enhances the ability to extract features of the lesion area.Meanwhile,to address the challenge of complex backgrounds in brain tumor detection,a Multi-Scale Attention Aggregation(MSAA)module is introduced.The module integrates features of lesions at different scales,enabling the model to effectively capture multi-scale contextual information and enhance detection accuracy in complex scenarios.Finally,during the model training process,the Shape-IoU loss function is employed to replace the Complete-IoU(CIoU)loss function for optimizing bounding box regression.This ensures that the predicted bounding boxes generated by the model closely match the actual tumor contours,thereby further enhancing the detection precision.The experimental results show that the improved method achieves 94.80%precision,93.60%recall,96.20%score,and 79.60%on the MRI for Brain Tumor with Bounding Boxes dataset.Compared to the YOLOv10s model,this represents improvements of 1.0%,1.1%,1.0%,and 1.1%,respectively.The method can achieve automatic detection and localization of three distinct categories of brain tumors—glioma,meningioma,and pituitary tumor,which can accurately detect and identify brain tumors,assist doctors in early diagnosis,and promote the development of early treatment. 展开更多
关键词 Brain tumor deep learning automatic detection YOLOv10s CMUNeXt Block MSAA Shape-IoU
在线阅读 下载PDF
A Novel Low-Complexity Low-Latency Power Efficient Collision Detection Algorithm for Wireless Sensor Networks
13
作者 Fawaz Alassery Walid K. M. Ahmed +1 位作者 Mohsen Sarraf Victor Lawrence 《Wireless Sensor Network》 2015年第6期43-75,共33页
Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error... Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms. 展开更多
关键词 WIRELESS SENSOR Networks WIRELESS SENSOR Protocols COLLISION detection algorithmS Power-Efficient Techniques Low COMPLEXITY algorithmS
在线阅读 下载PDF
An Edge-Boxes-Based Intruder Detection Algorithm for UAV Sense and Avoid System 被引量:4
14
作者 ZHANG Zhouyu CAO Yunfeng +2 位作者 ZHONG Peiyi DING Meng HU Yunqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第2期253-263,共11页
With the great development of unmanned aircraft system(UAS)over the last decade,sense and avoid(SAA)system has been a crucial technology for integrating unmanned aircraft vehicle(UAV)into national airspace with reliab... With the great development of unmanned aircraft system(UAS)over the last decade,sense and avoid(SAA)system has been a crucial technology for integrating unmanned aircraft vehicle(UAV)into national airspace with reliable and safe operations.This paper mainly focuses on intruder detection for SAA system.A robust algorithm based on the combination of edge-boxes and spatial pyramid matching using sparse coding(sc-SPM)is presented.The algorithm is composed of three stages.First,edge-boxes method is adopted to obtain a large number of proposals;Second,the optimization program is presented to obtain intruder area-of-interest(ROI)regions;Third,sc-SPM is employed for feature representation of ROI regions and support vector machines(SVM)is adopted to detect the intruder.The algorithm is evaluated under different weather conditions.The recall reaches to 0.95 in dawn and sunny weather and 0.9 in cloudy weather.The experimental results indicate that the intruder detection algorithm is effective and robust with various weather under complex background. 展开更多
关键词 detection unmanned aircraft vehicle(UAV) SENSE and avoid(SAA) edge-boxes sc-SPM ROI
在线阅读 下载PDF
Anomaly Detection Algorithm for Stay Cable Monitoring Data Based on Data Fusion 被引量:3
15
作者 Xiaoling Liu Qiao Huang Yuan Ren 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第3期39-43,共5页
In order to improve the accuracy and consistency of data in health monitoring system,an anomaly detection algorithm for stay cables based on data fusion is proposed.The monitoring data of Nanjing No.3 Yangtze River Br... In order to improve the accuracy and consistency of data in health monitoring system,an anomaly detection algorithm for stay cables based on data fusion is proposed.The monitoring data of Nanjing No.3 Yangtze River Bridge is used as the basis of study.Firstly,an adaptive processing framework with feedback control is established based on the concept of data fusion.The data processing contains four steps:data specification,data cleaning,data conversion and data fusion.Data processing information offers feedback to the original data system,which further gives guidance for the sensor maintenance or replacement.Subsequently,the algorithm steps based on the continuous data distortion is investigated,which integrates the inspection data and the distribution test method.Finally,a group of cable force data is utilized as an example to verify the established framework and algorithm.Experimental results show that the proposed algorithm can achieve high detection accuracy,providing a valuable reference for other monitoring data processing. 展开更多
关键词 stay CABLE HEALTH monitoring ANOMALY detection data fusion MANUAL inspection
在线阅读 下载PDF
DCA-YOLO:Detection Algorithm for YOLOv8 Pulmonary Nodules Based on Attention Mechanism Optimization 被引量:1
16
作者 SONG Yongsheng LIU Guohua 《Journal of Donghua University(English Edition)》 2025年第1期78-87,共10页
Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially... Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent. 展开更多
关键词 pulmonary nodule YOLOv8 network object detection deformable convolution atrous spatial pyramid pooling(ASPP) coordinate attention(CA)mechanism
在线阅读 下载PDF
TRLLD:Load Level Detection Algorithm Based on Threshold Recognition for Load Time Series
17
作者 Qingqing Song Shaoliang Xia Zhen Wu 《Computers, Materials & Continua》 2025年第5期2619-2642,共24页
Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples... Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples,leading to significant differences in load level detection conclusions for samples with different characteristics(trend,seasonality,cyclicality).Achieving automated,feature-adaptive,and quantifiable analysis methods remains a challenge.This paper proposes a Threshold Recognition-based Load Level Detection Algorithm(TRLLD),which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics.By utilizing distribution density uniformity,the algorithm classifies data points and ultimately obtains normalized load values.In the feature recognition step,the algorithm employs the Density Uniformity Index Based on Differences(DUID),High Load Level Concentration(HLLC),and Low Load Level Concentration(LLLC)to assess sample characteristics,which are independent of specific load values,providing a standardized perspective on features,ensuring high efficiency and strong interpretability.Compared to traditional methods,the proposed approach demonstrates better adaptive and real-time analysis capabilities.Experimental results indicate that it can effectively identify high load and low load regions in 16 groups of time series samples with different load characteristics,yielding highly interpretable results.The correlation between the DUID and sample density distribution uniformity reaches 98.08%.When introducing 10% MAD intensity noise,the maximum relative error is 4.72%,showcasing high robustness.Notably,it exhibits significant advantages in general and low sample scenarios. 展开更多
关键词 Load time series load level detection threshold recognition density uniformity index outlier detection management systems engineering
在线阅读 下载PDF
An Application of Canny Edge Detection Algorithm to Rail Thermal Image Fault Detection
18
作者 Libo Cai Yu Ma +2 位作者 Tangming Yuan Haifeng Wang Tianhua Xu 《Journal of Computer and Communications》 2015年第11期19-24,共6页
The paper discusses an application for rail track thermal image fault detection. In order to get better results from the Canny edge detection algorithm, the image needs to be processed in advance. The histogram equali... The paper discusses an application for rail track thermal image fault detection. In order to get better results from the Canny edge detection algorithm, the image needs to be processed in advance. The histogram equalization method is proposed to enhance the contrast of the image. Since a thermal image contains multiple parallel rail tracks, an algorithm has been developed to locate and separate the tracks that we are interested in. This is accomplished by applying the least squares linear fitting technique to represent the surface of a track. The performance of the application is evaluated by using a number of images provided by a specialised company and the results are essentially favourable. 展开更多
关键词 FAULT detection RAIL Thermal Image CANNY Edge detection Linear Least SQUARES
暂未订购
A Diffusion-Based Distributed Collaborative Energy Detection Algorithm for Spectrum Sensing in Cognitive Radio 被引量:1
19
作者 Junfang Li Wenxiao Chen +1 位作者 Shaoli Kang Yongming Guo 《Communications and Network》 2013年第3期276-279,共4页
Spectrum sensing is one of the most important steps in cognitive radio. In this paper, a new fully-distributed collaborative energy detection algorithm based on diffusion cooperation scheme and consensus filtering the... Spectrum sensing is one of the most important steps in cognitive radio. In this paper, a new fully-distributed collaborative energy detection algorithm based on diffusion cooperation scheme and consensus filtering theory is proposed, which doesn’t need the center node to fuse the detection results of all users. The secondary users only exchange information with their neighbors to obtain the detection data, and then make the corresponding decisions independently according to the pre-defined threshold. Simulations show that the proposed algorithm is more superior to the existing centralized collaborative energy detection algorithm in terms of the detecting performance and robustness in the insecurity situation. 展开更多
关键词 COLLABORATIVE Energy detection Data DIFFUSION COGNITIVE RADIO SPECTRUM Sensing
在线阅读 下载PDF
GFRF R-CNN:Object Detection Algorithm for Transmission Lines
20
作者 Xunguang Yan Wenrui Wang +3 位作者 Fanglin Lu Hongyong Fan Bo Wu Jianfeng Yu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1439-1458,共20页
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap... To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images. 展开更多
关键词 Faster R-CNN transmission line object detection GIOU GFR
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部