The Interconnected River System Network (IRSN) plays a crucial role in water resource allocation, water ecological restoration and water quality improvement. It has become a key part of the urban lake management. An e...The Interconnected River System Network (IRSN) plays a crucial role in water resource allocation, water ecological restoration and water quality improvement. It has become a key part of the urban lake management. An evaluation methodology system for IRSN project can provide important guidance for the selection of different water diversion schemes. However, few if any comprehensive evaluation systems have been developed to evaluate the hydrodynamics and water quality of connected lakes. This study developed a comprehensive evaluation system based on multi-indexes including aspects of water hydrodynamics, water quality and socioeconomics. A two-dimensional (2-D) mathematical hydrodynamics and water quality model was built, using NH<sub>3</sub>-N, TN and TP as water quality index. The IRSN project in Tangxun Lake group was used as a testbed here, and five water diversion schemes were simulated and evaluated. Results showed that the IRSN project can improve the water fluidity and the water quality obviously after a short time of water diversion, while the improvement rates decreased gradually as the water diversion went on. Among these five schemes, Scheme V showed the most noticeable improvement in hydrodynamics and water quality, and brought the most economic benefits. This comprehensive evaluation method can provide useful reference for the implementation of other similar IRSN projects.展开更多
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the...Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.展开更多
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener...The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.展开更多
Following a half century of popularity, central place theory experienced 20 years of neglect when the new urban system theory of network modeling gained attention at the beginning of the 1990s. However, central place ...Following a half century of popularity, central place theory experienced 20 years of neglect when the new urban system theory of network modeling gained attention at the beginning of the 1990s. However, central place theory remains valid, and it seems there has been a reemergence with it. Using the Greater Pearl River Delta (Greater PRD) as an experimental study region, this paper intends to present an empirical study that validates central place theory and shows that it can be integrated into an overall regional urban system. The study uses the compound Central Place Importance (CPI) to evaluate whether there is a hierarchy among the urban centers within the study area. The results indicate the existence of a hierarchy. Furthermore, empirical observation finds distinct complementarity relationships, rank-size distributions, and co-operative actions between the different cities, thus substantiating the claim that central place theory can be incorporated into an overall regional urban system. Besides, the presence of the densely distributed modern infrastructure system also appears to constitute a dimension of the overall urban system. There need further theoretical and empirical studies in order to support this proposition.展开更多
Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data...Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures.展开更多
Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases rema...Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0.展开更多
Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive...Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the defauk mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy sub- jects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the impor- tance of the interaction between these regions in pain processing.展开更多
Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall co...Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.展开更多
This study examined the spatio-temporal trajectories of the international freight forwarding service(IFFS) in the Yangtze River Delta(YRD) and explored the driving mechanisms of the service. Based on a bipartite netwo...This study examined the spatio-temporal trajectories of the international freight forwarding service(IFFS) in the Yangtze River Delta(YRD) and explored the driving mechanisms of the service. Based on a bipartite network projection from an IFFS firm-city data source, we mapped three IFFS networks in the YRD in 2005, 2010, and 2015. A range of statistical indicators were used to explore changes in the spatial patterns of the three networks. The underlying influence of marketization, globalization, decentralization, and integration was then explored. It was found that the connections between Shanghai and other nodal cities formed the backbones of these networks. The effects of a city's administrative level and provincial administrative borders were generally obvious. We found several specific spatial patterns associated with IFFS. For example, the four non-administrative centers of Ningbo, Suzhou, Lianyungang, and Nantong were the most connected cities and played the role of gateway cities. Furthermore, remarkable regional equalities were found regarding a city's IFFS network provision, with notable examples in the weakly connected areas of northern Jiangsu and southwestern Zhejiang. Finally, an analysis of the driving mechanisms demonstrated that IFFS network changes were highly sensitive to the influences of marketization and globalization, while regional integration played a lesser role in driving changes in IFFS networks.展开更多
BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes i...BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.展开更多
It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of col...It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state.Z-values in the vision-related brain regions were calculated, conifrming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental ifndings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.展开更多
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore func...Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.展开更多
In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by co...In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by convex hull, triangulated irregular network (TIN), Voronoi diagram, etc.;second, we manually assign decisional attributes to the information table according to conditional attributes. In doing so, the spatial information and attribute information are integrated together to evaluate the importance of points and rivers by rough sets theory. Finally, we select the point cluster and the river network in a progressive manner. The experimental results show that our method is valid and effective. In comparison with previous work, our method has the advantage to adaptively consider the spatial and attribute information at the same time without any a priori knowledge.展开更多
To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and app...To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation.展开更多
In this work, we conduct a research on the effects of the details of the terrain on the path establishment in wireless networks. We discuss how the terrain induced variations, that are unavoidably caused by the obstru...In this work, we conduct a research on the effects of the details of the terrain on the path establishment in wireless networks. We discuss how the terrain induced variations, that are unavoidably caused by the obstructions and irregularities in the surroundings of the transmitting and the receiving antennas, have two distinct effects on the network. Firstly, they reduce the amount of links in the network connectivity graph causing it to behave more randomly, while decreasing the coverage and capacity of the network. Secondly, they increase the length of the established paths between the nodes. The presented results show how the terrain oblique influences the layout of the network connectivity graph, in terms of different network metrics, and gives insight to the appropriate level of details needed to describe the terrain in order to obtain results that will be satisfyingly accurate.展开更多
Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term La...Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term Landsat satellite images acquired from 1997 to 2020 to quantify the impact of changes in hydrological connectivity induced by S.alterniflora on neighboring vegetation com-munities.The results showed that S.alterniflora rapidly expanded in the estuary area at a rate of 4.91 km^(2)/yr from 2010 to 2020.At the same time,the hydrological connectivity of the area and the distribution of S.salsa changed significantly.Small tidal creeks dominated the S.alterniflora landscape.The number of tidal creeks increased significantly,but their average length decreased and they tended to develop in a horizontal tree-like pattern.Affected by the changes in hydrological connectivity due to the S.alterniflora invasion,the area of S.salsa decreased by 41.1%,and the degree of landscape fragmentation increased from 1997 to 2020.Variations in the Largest Patch Index(LPI)indicated that the S.alterniflora landscape had become the dominant landscape type in the Yellow River Estuary.The res-ults of standard deviation ellipse(SDE)and Pearson’s correlation analyses indicated that a well-developed hydrological connectivity could promote the maintenance of the S.salsa landscape.The degradation of most S.salsa communities is caused by the influence of S.alterniflora on the morphological characteristics of the hydrological connectivity of tidal creek systems.展开更多
Recently, literature on urban network research from the perspective of ?rm networks has been increasing. This research mainly used data from the headquarters and branches of all 2581 listed manufacturing companies in ...Recently, literature on urban network research from the perspective of ?rm networks has been increasing. This research mainly used data from the headquarters and branches of all 2581 listed manufacturing companies in the Yangtze River Delta from 1990 to 2017, and studied the urban network through an interlocking network model that quantifies the links between enterprises. The results showed that the spatial distribution of listed manufacturing industries in the Yangtze River Delta was relatively concentrated, and cities such as Shanghai, Nanjing, and Hangzhou were hot spots for the spatial distribution of listed manufacturing industries. However, Fuyang, Suqian, Chizhou, Lishui and other network edge cities were less distributed in manufacturing. The urban network of the Yangtze River Delta has significant hierarchical characteristics. The urban network of the Yangtze River Delta presents a multi-center network development mode with Shanghai as the center and Nanjing, Hangzhou, and Hefei as the sub-centers. Moreover, we found that the development of inter-city connections in the Yangtze River Delta was driven by network mechanisms of priority attachment and path dependence. The radiating capacity and agglomeration capacity of cities in the Yangtze River Delta have a strong polarization characteristic. The core cities such as Shanghai, Nanjing, Hangzhou, and Hefei have much higher network radiation capabilities than network aggregation capabilities. However, other non-core cities and network edge cities have weak network radiation capabilities, and mainly accept network radiation from core cities. It enriches the research of urban networks based on real inter-?rm connections, and provides ideas for the wider regional study and the combination of econometric techniques and social network analysis.展开更多
In this paper, we present an analytical model to determine the network connectivity probability of a linear vehicular ad hoc network (VANET) formed by communication equipped vehicles on a two-way street scenario. We c...In this paper, we present an analytical model to determine the network connectivity probability of a linear vehicular ad hoc network (VANET) formed by communication equipped vehicles on a two-way street scenario. We consider the highway to be consisting of two lanes with vehicles moving in both directions on these lanes and focus on the probability of being able to convey messages from a source vehicle to a destination vehicle, which may be multiple hops away. Closed form analytical expression is obtained for the network connectivity probability in the presence of Nakagami fading channel. In our model, the transmission range of each vehicle is modeled as a random variable due to channel fading. The analytical results are validated by extensive simulations.展开更多
BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential fo...BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential for developing strategies to prevent MDE relapse.Despite its clinical importance,the brain network mechanisms underlying rumination in remitted MDE patients have yet to be fully elucidated.AIM To investigate the brain network mechanism underlying rumination in patients with remitted MDEs using functional magnetic resonance imaging(fMRI).METHODS We conducted an fMRI-based rumination-distraction task to induce rumination and distraction states in 51 patients with remitted MDEs.Functional connectivity(FC)was analyzed using the network-based statistic(NBS)approach,and eight topological metrics were calculated to compare the network topological properties between the two states.Correlation analyses were further performed to identify the relationships between individual rumination levels and the significantly altered brain network metrics.RESULTS The NBS analysis revealed that the altered FCs between the rumination and distraction states were located primarily in the frontoparietal,default mode,and cerebellar networks.No significant correlation was detected between these altered FCs and individual rumination levels.Among the eight topological metrics,the clustering coefficient,shortest path length,and local efficiency were significantly lower during rumination and positively correlated with individual rumination levels.In contrast,global efficiency was greater in the rumination state than in the distraction state and was negatively correlated with individual rumination levels.CONCLUSION Our work revealed the altered FC and topological properties during rumination in remitted MDE patients,offering valuable insights into the neural mechanisms of rumination from a brain network perspective.展开更多
基金National Key Research and Development Program,No.2017YFA0603704,No.2017YFC1502500
文摘The Interconnected River System Network (IRSN) plays a crucial role in water resource allocation, water ecological restoration and water quality improvement. It has become a key part of the urban lake management. An evaluation methodology system for IRSN project can provide important guidance for the selection of different water diversion schemes. However, few if any comprehensive evaluation systems have been developed to evaluate the hydrodynamics and water quality of connected lakes. This study developed a comprehensive evaluation system based on multi-indexes including aspects of water hydrodynamics, water quality and socioeconomics. A two-dimensional (2-D) mathematical hydrodynamics and water quality model was built, using NH<sub>3</sub>-N, TN and TP as water quality index. The IRSN project in Tangxun Lake group was used as a testbed here, and five water diversion schemes were simulated and evaluated. Results showed that the IRSN project can improve the water fluidity and the water quality obviously after a short time of water diversion, while the improvement rates decreased gradually as the water diversion went on. Among these five schemes, Scheme V showed the most noticeable improvement in hydrodynamics and water quality, and brought the most economic benefits. This comprehensive evaluation method can provide useful reference for the implementation of other similar IRSN projects.
基金supported by the Natural Science Foundation of Guangdong Province,No.2016A030313180(to FCJ)
文摘Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2025-00559546)supported by the IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2023-00259004).
文摘The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.
文摘Following a half century of popularity, central place theory experienced 20 years of neglect when the new urban system theory of network modeling gained attention at the beginning of the 1990s. However, central place theory remains valid, and it seems there has been a reemergence with it. Using the Greater Pearl River Delta (Greater PRD) as an experimental study region, this paper intends to present an empirical study that validates central place theory and shows that it can be integrated into an overall regional urban system. The study uses the compound Central Place Importance (CPI) to evaluate whether there is a hierarchy among the urban centers within the study area. The results indicate the existence of a hierarchy. Furthermore, empirical observation finds distinct complementarity relationships, rank-size distributions, and co-operative actions between the different cities, thus substantiating the claim that central place theory can be incorporated into an overall regional urban system. Besides, the presence of the densely distributed modern infrastructure system also appears to constitute a dimension of the overall urban system. There need further theoretical and empirical studies in order to support this proposition.
文摘Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures.
基金supported by the Jiangsu Maternal and Child Health Research Project of China,No.F201612(to HXL)Changzhou Science and Technology Support Plan of China,No.CE20165027(to HXL)+1 种基金Changzhou City Planning Commission Major Science and Technology Projects of China,No.ZD201515(to HXL)Changzhou High Level Training Fund for Health Professionals of China,No.2016CZBJ028(to HXL)
文摘Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0.
基金supported by the Science and Technology Foundation of Guangdong Province of China,No.2012B031800305
文摘Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the defauk mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy sub- jects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the impor- tance of the interaction between these regions in pain processing.
文摘Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.
基金National Natural Science Foundation of China(No.41671132,41771139)Natural Science Foundation of Jiangsu Province(No.BK20171516)
文摘This study examined the spatio-temporal trajectories of the international freight forwarding service(IFFS) in the Yangtze River Delta(YRD) and explored the driving mechanisms of the service. Based on a bipartite network projection from an IFFS firm-city data source, we mapped three IFFS networks in the YRD in 2005, 2010, and 2015. A range of statistical indicators were used to explore changes in the spatial patterns of the three networks. The underlying influence of marketization, globalization, decentralization, and integration was then explored. It was found that the connections between Shanghai and other nodal cities formed the backbones of these networks. The effects of a city's administrative level and provincial administrative borders were generally obvious. We found several specific spatial patterns associated with IFFS. For example, the four non-administrative centers of Ningbo, Suzhou, Lianyungang, and Nantong were the most connected cities and played the role of gateway cities. Furthermore, remarkable regional equalities were found regarding a city's IFFS network provision, with notable examples in the weakly connected areas of northern Jiangsu and southwestern Zhejiang. Finally, an analysis of the driving mechanisms demonstrated that IFFS network changes were highly sensitive to the influences of marketization and globalization, while regional integration played a lesser role in driving changes in IFFS networks.
基金Supported by the Pharmaceutical Science and Technology Project of Zhejiang Province,No.2023RC266the Natural Science Foundation of Ningbo,No.202003N4266.
文摘BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.
基金financially supported by grants from the National Natural Science Foundation of China,No.61170136,61373101,61472270,and 61402318Natural Science Foundation(Youth Science and Technology Research Foundation)of Shanxi Province,No.2014021022-5Shanxi Provincial Key Science and Technology Projects(Agriculture),No.20130311037-4
文摘It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state.Z-values in the vision-related brain regions were calculated, conifrming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental ifndings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.60905024
文摘Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.
文摘In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by convex hull, triangulated irregular network (TIN), Voronoi diagram, etc.;second, we manually assign decisional attributes to the information table according to conditional attributes. In doing so, the spatial information and attribute information are integrated together to evaluate the importance of points and rivers by rough sets theory. Finally, we select the point cluster and the river network in a progressive manner. The experimental results show that our method is valid and effective. In comparison with previous work, our method has the advantage to adaptively consider the spatial and attribute information at the same time without any a priori knowledge.
基金Supported by the National Natural Science Foundation of China(U1663208,51520105005)the National Science and Technology Major Project of China(2017ZX05009-005,2016ZX05037-003)
文摘To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation.
文摘In this work, we conduct a research on the effects of the details of the terrain on the path establishment in wireless networks. We discuss how the terrain induced variations, that are unavoidably caused by the obstructions and irregularities in the surroundings of the transmitting and the receiving antennas, have two distinct effects on the network. Firstly, they reduce the amount of links in the network connectivity graph causing it to behave more randomly, while decreasing the coverage and capacity of the network. Secondly, they increase the length of the established paths between the nodes. The presented results show how the terrain oblique influences the layout of the network connectivity graph, in terms of different network metrics, and gives insight to the appropriate level of details needed to describe the terrain in order to obtain results that will be satisfyingly accurate.
基金Under the auspices of Key Program of the National Natural Science Foundation of China(No.U2006215,U1806218)the National Key R&D Program of China(No.2017YFC0505902)。
文摘Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term Landsat satellite images acquired from 1997 to 2020 to quantify the impact of changes in hydrological connectivity induced by S.alterniflora on neighboring vegetation com-munities.The results showed that S.alterniflora rapidly expanded in the estuary area at a rate of 4.91 km^(2)/yr from 2010 to 2020.At the same time,the hydrological connectivity of the area and the distribution of S.salsa changed significantly.Small tidal creeks dominated the S.alterniflora landscape.The number of tidal creeks increased significantly,but their average length decreased and they tended to develop in a horizontal tree-like pattern.Affected by the changes in hydrological connectivity due to the S.alterniflora invasion,the area of S.salsa decreased by 41.1%,and the degree of landscape fragmentation increased from 1997 to 2020.Variations in the Largest Patch Index(LPI)indicated that the S.alterniflora landscape had become the dominant landscape type in the Yellow River Estuary.The res-ults of standard deviation ellipse(SDE)and Pearson’s correlation analyses indicated that a well-developed hydrological connectivity could promote the maintenance of the S.salsa landscape.The degradation of most S.salsa communities is caused by the influence of S.alterniflora on the morphological characteristics of the hydrological connectivity of tidal creek systems.
文摘Recently, literature on urban network research from the perspective of ?rm networks has been increasing. This research mainly used data from the headquarters and branches of all 2581 listed manufacturing companies in the Yangtze River Delta from 1990 to 2017, and studied the urban network through an interlocking network model that quantifies the links between enterprises. The results showed that the spatial distribution of listed manufacturing industries in the Yangtze River Delta was relatively concentrated, and cities such as Shanghai, Nanjing, and Hangzhou were hot spots for the spatial distribution of listed manufacturing industries. However, Fuyang, Suqian, Chizhou, Lishui and other network edge cities were less distributed in manufacturing. The urban network of the Yangtze River Delta has significant hierarchical characteristics. The urban network of the Yangtze River Delta presents a multi-center network development mode with Shanghai as the center and Nanjing, Hangzhou, and Hefei as the sub-centers. Moreover, we found that the development of inter-city connections in the Yangtze River Delta was driven by network mechanisms of priority attachment and path dependence. The radiating capacity and agglomeration capacity of cities in the Yangtze River Delta have a strong polarization characteristic. The core cities such as Shanghai, Nanjing, Hangzhou, and Hefei have much higher network radiation capabilities than network aggregation capabilities. However, other non-core cities and network edge cities have weak network radiation capabilities, and mainly accept network radiation from core cities. It enriches the research of urban networks based on real inter-?rm connections, and provides ideas for the wider regional study and the combination of econometric techniques and social network analysis.
文摘In this paper, we present an analytical model to determine the network connectivity probability of a linear vehicular ad hoc network (VANET) formed by communication equipped vehicles on a two-way street scenario. We consider the highway to be consisting of two lanes with vehicles moving in both directions on these lanes and focus on the probability of being able to convey messages from a source vehicle to a destination vehicle, which may be multiple hops away. Closed form analytical expression is obtained for the network connectivity probability in the presence of Nakagami fading channel. In our model, the transmission range of each vehicle is modeled as a random variable due to channel fading. The analytical results are validated by extensive simulations.
基金the National Key Research and Development Program of China,No.2021ZD0202000the National Natural Science Foundation of China,No.82101612 and No.82471570+1 种基金the Natural Science Foundation of Hunan Province,China,No.2022JJ40692the Science and Technology Innovation Program of Hunan Province,No.2021RC2040 and No.2024RC3056.
文摘BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential for developing strategies to prevent MDE relapse.Despite its clinical importance,the brain network mechanisms underlying rumination in remitted MDE patients have yet to be fully elucidated.AIM To investigate the brain network mechanism underlying rumination in patients with remitted MDEs using functional magnetic resonance imaging(fMRI).METHODS We conducted an fMRI-based rumination-distraction task to induce rumination and distraction states in 51 patients with remitted MDEs.Functional connectivity(FC)was analyzed using the network-based statistic(NBS)approach,and eight topological metrics were calculated to compare the network topological properties between the two states.Correlation analyses were further performed to identify the relationships between individual rumination levels and the significantly altered brain network metrics.RESULTS The NBS analysis revealed that the altered FCs between the rumination and distraction states were located primarily in the frontoparietal,default mode,and cerebellar networks.No significant correlation was detected between these altered FCs and individual rumination levels.Among the eight topological metrics,the clustering coefficient,shortest path length,and local efficiency were significantly lower during rumination and positively correlated with individual rumination levels.In contrast,global efficiency was greater in the rumination state than in the distraction state and was negatively correlated with individual rumination levels.CONCLUSION Our work revealed the altered FC and topological properties during rumination in remitted MDE patients,offering valuable insights into the neural mechanisms of rumination from a brain network perspective.