Proton Exchange Membrane Water Electrolyzers(PEMWE)are efficient and sustainable hydrogen production devices.This article analyzes their static and dynamic electrical models integrated with degradation mechanisms.Stat...Proton Exchange Membrane Water Electrolyzers(PEMWE)are efficient and sustainable hydrogen production devices.This article analyzes their static and dynamic electrical models integrated with degradation mechanisms.Static models reveal steady-state behavior,while dynamic models capture transient responses to input variations.The developed modeling approach combines the activation and diffusion phenomena,resulting in a novel PEMWE model that closely reflects real-world conditions and enables fast simulations.The electrical model is integrated with the aging model through two key ratios,surface degradation ratio and membrane degradation ratio,which characterize degradation mechanisms affecting electrode and membrane performance.The linear model using second-order Taylor approximation enables the development of a diagnosis approach that can contribute to estimating the remaining useful life of PEMWEs.By associating aging models with electrical models through the proposed ratios,a deeper understanding is achieved regarding how degra-dation phenomena evolve and influence electrolyzer efficiency and durability.The integrated framework enables predictive maintenance strategies,making it valuable for industrial hydrogen production applications.展开更多
Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through s...Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through systematic analysis of 150 peer-reviewed studies employing mixed-methods research,this review yields three principal advancements to the reliability analysis of AUVs.First,based on the hierarchical functional division of AUVs into six subsystems(propulsion system,navigation system,communication system,power system,environmental detection system,and emergency system),this study systematically identifies the primary failure modes and potential failure causes of each subsystem,providing theoretical support for fault diagnosis and reliability optimization.Subsequently,a comprehensive review of AUV reliability analysis methods is conducted from three perspectives:analytical methods,simulated methods,and surrogate model methods.The applicability and limitations of each method are critically analyzed to offer insights into their suitability for engineering applications.Finally,the study highlights key challenges and research hotpots in AUV reliability analysis,including reliability analysis under limited data,AI-driven reliability analysis,and human reliability analysis.Furthermore,the potential of multi-sensor data fusion,edge computing,and advanced materials in enhancing AUV environmental adaptability and reliability is explored.展开更多
Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capabl...Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. In this work, we develop a MATLAB code to examine the effect of the smart grid applications in improving the reliability of the power distribution networks via Monte Carlo Simulation approach. The system used in this paper is the IEEE 34 test feeder. The objective is to measure the installations of the Automatic Reclosers (ARs) as well as the Distributed Generators (DGs) on the reliability indices, SAIDI, SAIFI, CAIDI and EUE, and make comparisons with results from a previous study done by the authors using another approach. The MATLAB code should provide close results to the output of the previous research to verify its effectiveness.展开更多
Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of ...Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations,traditional nodal pricing models often fall short to meet these new challenges.This research introduces a novel enhanced nodal pricing mechanism for distribution networks,integrating advanced optimization techniques and hybrid models to overcome these limitations.The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and system reliability.This study leverages cutting-edge hybrid algorithms,combining elements of machine learning with conventional optimization methods,to achieve superior performance.Key findings demonstrate that the proposed hybrid nodal pricing model significantly reduces pricing errors and operational costs compared to conventional methods.Through extensive simulations and comparative analysis,the model exhibits enhanced performance under varying load conditions and increased levels of renewable energy integration.The results indicate a substantial improvement in pricing precision and network stability.This study contributes to the ongoing discourse on optimizing electricity market mechanisms and provides actionable insights for policymakers and utility operators.By addressing the complexities of modern power distribution systems,our research offers a robust solution that enhances the efficiency and reliability of power distribution networks,marking a significant advancement in the field.展开更多
We consider reliability engineering in modern civil aviation industry, and the related engineering activities and methods. We consider reliability in a broad sense, referring to other system characteristics that are r...We consider reliability engineering in modern civil aviation industry, and the related engineering activities and methods. We consider reliability in a broad sense, referring to other system characteristics that are related to it, like availability, maintainability, safety and durability. We covered the entire lifecycle of the equipment, including reliability requirement identification, reliability analysis and design, verification and validation of reliability requirements(typically involved in the equipment design and development phase), quality assurance(which typically enters in the manufacturing phase), and fault diagnosis and prognosis and maintenance(which are connected to the operation phase). Lessons learnt from reliability engineering practices in civil aviation industry are given, which might serve as reference for reliability managers and engineers, also from other industries with high reliability requirements.展开更多
Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an...Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.展开更多
The fatigue of heavy-haul railway bridges is considered a key concern due to high stress levels and cyclic loading.The evaluation of fatigue reliability is required to include factor correlations.A major challenge is ...The fatigue of heavy-haul railway bridges is considered a key concern due to high stress levels and cyclic loading.The evaluation of fatigue reliability is required to include factor correlations.A major challenge is presented by the construction of the cumulative distribution function(CDF)and the description of correlations between random variables.In this study,the copula function is used to analyze the fatigue failure probability of the Shuohuang heavy-haul railway bridge.A C-vine copula(CVC)-based joint probability density function(JPDF)is derived with eight correlated parameters.To enhance efficiency in small failure probability calculations,the subset simulation and most probable point(MPP)Monte Carlo importance sampling are introduced based on the Rosenblatt transform and C-vine model.Comparisons with traditional Monte Carlo methods confirm that high accuracy and efficiency are achieved.The results show that when parameter correlations are ignored,failure probability is underestimated,increasing safety risks in bridge assessments.展开更多
In order to take into account the uncertainties linked to the variables in the evaluation of the statistical properties of structural response, a reliability approach with probabilistic aspect was considered. This is ...In order to take into account the uncertainties linked to the variables in the evaluation of the statistical properties of structural response, a reliability approach with probabilistic aspect was considered. This is called the Probabilistic Transformation Method (PTM). This method is readily applicable when the function between the input and the output of the system is explicit. However, the situation is much more involved when it is necessary to perform the evaluation of implicit function between the input and the output of the system through numerical models. In this work, we propose a technique that combines Finite Element Analysis (FEA) and Probabilistic Transformation Method (PTM) to evaluate the Probability Density Function (PDF) of response where the function between the input and the output of the system is implicit. This technique is based on the numerical simulations of the Finite Element Analysis (FEA) and the Probabilistic Transformation Method (PTM) using an interface between Finite Element software and Matlab. Some problems of structures are treated in order to prove the applicability of the proposed technique. Moreover, the obtained results are compared to those obtained by the reference method of Monte Carlo. A second aim of this work is to develop an algorithm of global optimization using the local method SQP, because of its effectiveness and its rapidity of convergence. For this reason, we have combined the method SQP with the Multi start method. This developed algorithm is tested on test functions comparing with other methods such as the method of Particle Swarm Optimization (PSO). In order to test the applicability of the proposed approach, a structure is optimized under reliability constraints.展开更多
This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty...This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.展开更多
In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent unc...In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.展开更多
To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply ...To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply formulated in x-space and requires neither transformation of correlated random variables nor optimization tools. The solution can be easily improved by iteratively adjusting the step length. The algorithm is particularly useful to practicing engineers for geotechnical reliability analysis where standalone(deterministic) numerical packages are used. Based on the proposed algorithm and through direct perturbation analysis of random variables, we conducted a case study of earth slope reliability with complete consideration of soil uncertainty and spatial variability.展开更多
Continuously increasing inflation is a major challenge in presenting reliable and relevant financial reports,especially in developing countries like Indonesia.This study aims to analyze the role of inflation accountin...Continuously increasing inflation is a major challenge in presenting reliable and relevant financial reports,especially in developing countries like Indonesia.This study aims to analyze the role of inflation accounting in increasing the reliability of financial reports during times of high inflation.With a qualitative-descriptive approach,this research examines two main methods in inflation accounting,namely General Price Level Accounting(GPLA)and Current Cost Accounting(CCA),and their impact on the value of assets,liabilities,income,and costs.The analysis results show that historical cost-based financial reports do not reflect actual economic conditions during inflation,so they can be misleading in decision making.The application of inflation accounting,through adjustments to purchasing power and current prices,has been proven to be able to increase the relevance and reliability of financial information.However,limitations in implementation in Indonesia are due to the lack of regulations and practical understanding regarding this method.Therefore,the application of inflation accounting is important in supporting the quality of financial reports and more accurate decision making amidst economic instability.展开更多
Bonding quality at the interface of solid propellant grains is crucial for the reliability and safety of solid rocket motors.Although bonding reliability is influenced by numerous factors,the lack of quantitative char...Bonding quality at the interface of solid propellant grains is crucial for the reliability and safety of solid rocket motors.Although bonding reliability is influenced by numerous factors,the lack of quantitative characterization of interface debonding mechanisms and the challenge of identifying key factors have made precise control of process variables difficult,resulting in unpredictable failure risks.This paper presents an improved fuzzy failure probability evaluation method that combines fuzzy fault tree analysis with expert knowledge,transforming process data into fuzzy failure probability to accurately assess debonding probabilities.The predictive model is constructed through a general regression neural network and optimized using the particle swarm optimization algorithm.Sensitivity analysis is conducted to identify key decision variables,including normal force,grain rotation speed,and adhesive weight,which are verified experimentally.Compared with classical models,the maximum error margin of the constructed reliability prediction model is only 0.02%,and it has high stability.The experimental results indicate that the main factors affecting debonding are processing roughness and coating uniformity.Controlling the key decision variable as the median resulted in a maximum increase of 200.7%in bonding strength.The feasibility of the improved method has been verified,confirming that identifying key decision variables has the ability to improve bonding reliability.The proposed method simplifies the evaluation of propellant interface bonding reliability under complex conditions by quantifying the relationship between process parameters and failure risk,enabling targeted management of key decision variables.展开更多
The novel structural reliability methodology presented in this study is especially well suited for multidimensional structural dynamics that are physically measured or numerically simulated over a representative timel...The novel structural reliability methodology presented in this study is especially well suited for multidimensional structural dynamics that are physically measured or numerically simulated over a representative timelapse.The Gaidai multivariate reliability method is applied to an operational offshore Jacket platform that operates in Bohai Bay.This study demonstrates the feasibility of this method to accurately estimate collapse risks in dynamic systems under in situ environmental stressors.Modern reliability approaches do not cope easily with the high dimensionality of real engineering dynamic systems,as well as nonlinear intercorrelations between various structural components.The Jacket offshore platform is chosen as the case study for this reliability analysis because of the presence of various hotspot stresses that synchronously arise in its structural parts.The authors provide a straightforward,precise method for estimating overall risks of operational failure,damage,or hazard for nonlinear multidimensional dynamic systems.The latter tool is important for offshore engineers during the design stage.展开更多
Thermal Protection System(TPS)with thick tiles,low thermal conductivity,and a short re-entry stage stands as a critical element within reusable aircraft,whose reliability is related to the function and changes with th...Thermal Protection System(TPS)with thick tiles,low thermal conductivity,and a short re-entry stage stands as a critical element within reusable aircraft,whose reliability is related to the function and changes with their physical properties,external conditions,and degradation.Meanwhile,due to the limitation of testing resources,epistemic uncertainties stemming from the small samples are present in TPS reliability modeling.However,current TPS reliability modeling methods face challenges in characterizing the relationships among reliability and physical properties,external conditions,degradation,and epistemic uncertainties.Therefore,under the framework of belief reliability theory,a TPS reliability model is constructed,which takes into account the physical principle,external conditions,performance degradation,and epistemic uncertainties.A reliability simulation algorithm is proposed to calculate TPS reliability.Through a case study and comparison analysis,the proposed method is validated as more effective than the existing method.Additionally,reliability sensitivity analysis is conducted to identify the sensitive factors of reliability under the condition of small samples,through which suggestions are provided for TPS functional design and improvement.展开更多
Technological advancements and the emphasis on reducing the use of hazardous materials,such as Pb,have led to the widely use of Sn-based Pb-free solder in advanced packaging technology.With the miniaturization of sold...Technological advancements and the emphasis on reducing the use of hazardous materials,such as Pb,have led to the widely use of Sn-based Pb-free solder in advanced packaging technology.With the miniaturization of solder joints,Sn-based micro solder joints often contain single or limitedβ-Sn grains.The strong anisotropy ofβ-Sn,which is significantly correlated with the reliability of the micro solder joints during service,requires the development of methods for controlling the orientations of theseβ-Sn grains.In this review,we focus on the anisotropy of theβ-Sn grains in micro solder joints and the interactions betweenβ-Sn grain orientation and reliability issues concerning electromigration(EM),thermomigration(TM),EM+TM,corrosion process,tensile and shear creep behavior,thermal cycling(TC)and cryogenic temperature.Furthermore,we summarize the strategies for controlling theβ-Sn orientation in micro solder joints.The methods include changing the solder joint size and composition,adding additives,nucleating on specific substrates and interfacial intermetallic compounds,with the aid of external loads during solidification process and introducing heredity effect of theβ-Sn texture during multi-reflow.Finally,the{101}and{301}twinning models with∼60°rotations about a common〈100〉are adopted to explain the mechanism ofβ-Sn grain nucleation and morphology.The shortcomings of the existing methods and the further potential for the development in the field are discussed to promote the application of Pb-free solders in advanced packaging.展开更多
The utilization of high-strength steel bars(HSSB)within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement.Nevertheless,existing design codes exhibi...The utilization of high-strength steel bars(HSSB)within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement.Nevertheless,existing design codes exhibit limitations in addressing the distinct statistical characteristics of HSSB,particularly regarding strength design parameters.For instance,GB50010-2010 fails to specify design strength values for reinforcement exceeding 600 MPa,creating technical barriers for advancing HSSB implementation.This study systematically investigates the reliability of eccentric compression concrete columns reinforced with 600 MPa-grade HSSB through high-order moment method analysis.Material partial factors were calibrated against target reliability indices prescribed by GB50068-2018,incorporating critical variables including live-to-dead load ratios,design methodologies,and service conditions.The findings show that the value of k significantly affects the calibration of material partial factors,impacting the reliability of bearing capacity.Considering various k values and target reliability indices,it is recommended that the material partialfactorbe setat1.15,implyingthatthedesignstrengthfor600MPahigh-strengthsteelbars shouldbe considered as 522 MPa.For safety levels I and II,load adjustment factors of 1.1 and 0.9,respectively,may be applied.展开更多
The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system(ECS)designs that prioritize lifetime operational reliability.Traditional optimization approaches often sim...The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system(ECS)designs that prioritize lifetime operational reliability.Traditional optimization approaches often simplify reliability considerations or fail to holistically integrate them with economic and technical constraints.This paper introduces a novel,two-stage optimization framework for offshore wind farm(OWF)ECS planning that systematically incorporates reliability.The first stage employs Mixed-Integer Linear Programming(MILP)to determine an optimal radial network topology,considering linearized reliability approximations and geographical constraints.The second stage enhances this design by strategically placing tie-lines using a Mixed-Integer Quadratically Constrained Program(MIQCP).This stage leverages a dynamic-aware adaptation of Multi-Source Multi-Terminal Network Reliability(MSMT-NR)assessment,with its inherent nonlinear equations successfully transformed into a solvable MIQCP form for loopy networks.A benchmark case study demonstrates the framework’s efficacy,illustrating how increasing the emphasis on reliability leads to more distributed and interconnected network topologies,effectively balancing investment costs against enhanced system resilience.展开更多
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random...Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.展开更多
Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence spee...Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis.展开更多
文摘Proton Exchange Membrane Water Electrolyzers(PEMWE)are efficient and sustainable hydrogen production devices.This article analyzes their static and dynamic electrical models integrated with degradation mechanisms.Static models reveal steady-state behavior,while dynamic models capture transient responses to input variations.The developed modeling approach combines the activation and diffusion phenomena,resulting in a novel PEMWE model that closely reflects real-world conditions and enables fast simulations.The electrical model is integrated with the aging model through two key ratios,surface degradation ratio and membrane degradation ratio,which characterize degradation mechanisms affecting electrode and membrane performance.The linear model using second-order Taylor approximation enables the development of a diagnosis approach that can contribute to estimating the remaining useful life of PEMWEs.By associating aging models with electrical models through the proposed ratios,a deeper understanding is achieved regarding how degra-dation phenomena evolve and influence electrolyzer efficiency and durability.The integrated framework enables predictive maintenance strategies,making it valuable for industrial hydrogen production applications.
基金The National Key R&D Program Projects(Grant No.2022YFC2803601)the Natural Science Foundation of Shandong Province(Grant No.ZR2021YQ29)+1 种基金the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2024E036)the Taishan Scholars Project(Grant No.tsqn202312317).
文摘Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through systematic analysis of 150 peer-reviewed studies employing mixed-methods research,this review yields three principal advancements to the reliability analysis of AUVs.First,based on the hierarchical functional division of AUVs into six subsystems(propulsion system,navigation system,communication system,power system,environmental detection system,and emergency system),this study systematically identifies the primary failure modes and potential failure causes of each subsystem,providing theoretical support for fault diagnosis and reliability optimization.Subsequently,a comprehensive review of AUV reliability analysis methods is conducted from three perspectives:analytical methods,simulated methods,and surrogate model methods.The applicability and limitations of each method are critically analyzed to offer insights into their suitability for engineering applications.Finally,the study highlights key challenges and research hotpots in AUV reliability analysis,including reliability analysis under limited data,AI-driven reliability analysis,and human reliability analysis.Furthermore,the potential of multi-sensor data fusion,edge computing,and advanced materials in enhancing AUV environmental adaptability and reliability is explored.
文摘Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. In this work, we develop a MATLAB code to examine the effect of the smart grid applications in improving the reliability of the power distribution networks via Monte Carlo Simulation approach. The system used in this paper is the IEEE 34 test feeder. The objective is to measure the installations of the Automatic Reclosers (ARs) as well as the Distributed Generators (DGs) on the reliability indices, SAIDI, SAIFI, CAIDI and EUE, and make comparisons with results from a previous study done by the authors using another approach. The MATLAB code should provide close results to the output of the previous research to verify its effectiveness.
文摘Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations,traditional nodal pricing models often fall short to meet these new challenges.This research introduces a novel enhanced nodal pricing mechanism for distribution networks,integrating advanced optimization techniques and hybrid models to overcome these limitations.The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and system reliability.This study leverages cutting-edge hybrid algorithms,combining elements of machine learning with conventional optimization methods,to achieve superior performance.Key findings demonstrate that the proposed hybrid nodal pricing model significantly reduces pricing errors and operational costs compared to conventional methods.Through extensive simulations and comparative analysis,the model exhibits enhanced performance under varying load conditions and increased levels of renewable energy integration.The results indicate a substantial improvement in pricing precision and network stability.This study contributes to the ongoing discourse on optimizing electricity market mechanisms and provides actionable insights for policymakers and utility operators.By addressing the complexities of modern power distribution systems,our research offers a robust solution that enhances the efficiency and reliability of power distribution networks,marking a significant advancement in the field.
基金supported by the National Natural Science Foundation of China (Nos. 61573043, 71671009 and 71601010)
文摘We consider reliability engineering in modern civil aviation industry, and the related engineering activities and methods. We consider reliability in a broad sense, referring to other system characteristics that are related to it, like availability, maintainability, safety and durability. We covered the entire lifecycle of the equipment, including reliability requirement identification, reliability analysis and design, verification and validation of reliability requirements(typically involved in the equipment design and development phase), quality assurance(which typically enters in the manufacturing phase), and fault diagnosis and prognosis and maintenance(which are connected to the operation phase). Lessons learnt from reliability engineering practices in civil aviation industry are given, which might serve as reference for reliability managers and engineers, also from other industries with high reliability requirements.
基金Supported by the National Natural Science Foundation of China (Grant Nos.52088102 and 51879287)National Key Research and Development Program of China (Grant No.2022YFB2602301)。
文摘Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.
基金Project supported by the National Natural Science Foundation of China(No.52278180)。
文摘The fatigue of heavy-haul railway bridges is considered a key concern due to high stress levels and cyclic loading.The evaluation of fatigue reliability is required to include factor correlations.A major challenge is presented by the construction of the cumulative distribution function(CDF)and the description of correlations between random variables.In this study,the copula function is used to analyze the fatigue failure probability of the Shuohuang heavy-haul railway bridge.A C-vine copula(CVC)-based joint probability density function(JPDF)is derived with eight correlated parameters.To enhance efficiency in small failure probability calculations,the subset simulation and most probable point(MPP)Monte Carlo importance sampling are introduced based on the Rosenblatt transform and C-vine model.Comparisons with traditional Monte Carlo methods confirm that high accuracy and efficiency are achieved.The results show that when parameter correlations are ignored,failure probability is underestimated,increasing safety risks in bridge assessments.
文摘In order to take into account the uncertainties linked to the variables in the evaluation of the statistical properties of structural response, a reliability approach with probabilistic aspect was considered. This is called the Probabilistic Transformation Method (PTM). This method is readily applicable when the function between the input and the output of the system is explicit. However, the situation is much more involved when it is necessary to perform the evaluation of implicit function between the input and the output of the system through numerical models. In this work, we propose a technique that combines Finite Element Analysis (FEA) and Probabilistic Transformation Method (PTM) to evaluate the Probability Density Function (PDF) of response where the function between the input and the output of the system is implicit. This technique is based on the numerical simulations of the Finite Element Analysis (FEA) and the Probabilistic Transformation Method (PTM) using an interface between Finite Element software and Matlab. Some problems of structures are treated in order to prove the applicability of the proposed technique. Moreover, the obtained results are compared to those obtained by the reference method of Monte Carlo. A second aim of this work is to develop an algorithm of global optimization using the local method SQP, because of its effectiveness and its rapidity of convergence. For this reason, we have combined the method SQP with the Multi start method. This developed algorithm is tested on test functions comparing with other methods such as the method of Particle Swarm Optimization (PSO). In order to test the applicability of the proposed approach, a structure is optimized under reliability constraints.
文摘This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.
基金supported by the National Natural Science Foundation of China (Nos.11572134 and 11832013).
文摘In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.
基金Financial supports from National Science Foundation of China(Grant Nos.51609072,51879091,51479050 and 41630638)the National Key Basic Research Program of China("973" Program)(Grant No.2015CB057901)the Public Service Sector R&D Project of Ministry of Water Resource of China(Grant No.201501035-03)
文摘To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply formulated in x-space and requires neither transformation of correlated random variables nor optimization tools. The solution can be easily improved by iteratively adjusting the step length. The algorithm is particularly useful to practicing engineers for geotechnical reliability analysis where standalone(deterministic) numerical packages are used. Based on the proposed algorithm and through direct perturbation analysis of random variables, we conducted a case study of earth slope reliability with complete consideration of soil uncertainty and spatial variability.
文摘Continuously increasing inflation is a major challenge in presenting reliable and relevant financial reports,especially in developing countries like Indonesia.This study aims to analyze the role of inflation accounting in increasing the reliability of financial reports during times of high inflation.With a qualitative-descriptive approach,this research examines two main methods in inflation accounting,namely General Price Level Accounting(GPLA)and Current Cost Accounting(CCA),and their impact on the value of assets,liabilities,income,and costs.The analysis results show that historical cost-based financial reports do not reflect actual economic conditions during inflation,so they can be misleading in decision making.The application of inflation accounting,through adjustments to purchasing power and current prices,has been proven to be able to increase the relevance and reliability of financial information.However,limitations in implementation in Indonesia are due to the lack of regulations and practical understanding regarding this method.Therefore,the application of inflation accounting is important in supporting the quality of financial reports and more accurate decision making amidst economic instability.
基金supported in part by the Equipment Development Pre-research Project funded by Equipment Development Department,PRC under Grant No.50923010501Fundamental Research Program of Shenyang Institute of Automation(SIA),Chinese Academy of Sciencess under Grant No.355060201。
文摘Bonding quality at the interface of solid propellant grains is crucial for the reliability and safety of solid rocket motors.Although bonding reliability is influenced by numerous factors,the lack of quantitative characterization of interface debonding mechanisms and the challenge of identifying key factors have made precise control of process variables difficult,resulting in unpredictable failure risks.This paper presents an improved fuzzy failure probability evaluation method that combines fuzzy fault tree analysis with expert knowledge,transforming process data into fuzzy failure probability to accurately assess debonding probabilities.The predictive model is constructed through a general regression neural network and optimized using the particle swarm optimization algorithm.Sensitivity analysis is conducted to identify key decision variables,including normal force,grain rotation speed,and adhesive weight,which are verified experimentally.Compared with classical models,the maximum error margin of the constructed reliability prediction model is only 0.02%,and it has high stability.The experimental results indicate that the main factors affecting debonding are processing roughness and coating uniformity.Controlling the key decision variable as the median resulted in a maximum increase of 200.7%in bonding strength.The feasibility of the improved method has been verified,confirming that identifying key decision variables has the ability to improve bonding reliability.The proposed method simplifies the evaluation of propellant interface bonding reliability under complex conditions by quantifying the relationship between process parameters and failure risk,enabling targeted management of key decision variables.
文摘The novel structural reliability methodology presented in this study is especially well suited for multidimensional structural dynamics that are physically measured or numerically simulated over a representative timelapse.The Gaidai multivariate reliability method is applied to an operational offshore Jacket platform that operates in Bohai Bay.This study demonstrates the feasibility of this method to accurately estimate collapse risks in dynamic systems under in situ environmental stressors.Modern reliability approaches do not cope easily with the high dimensionality of real engineering dynamic systems,as well as nonlinear intercorrelations between various structural components.The Jacket offshore platform is chosen as the case study for this reliability analysis because of the presence of various hotspot stresses that synchronously arise in its structural parts.The authors provide a straightforward,precise method for estimating overall risks of operational failure,damage,or hazard for nonlinear multidimensional dynamic systems.The latter tool is important for offshore engineers during the design stage.
基金supported by the steady supports scientific research of Key Laboratory of Defense Science and Technology,China(No.WDZC20220105)the National Natural Science Foundation of China(Nos.51775020,62073009,U20B2002)the Science Challenge Project,China(No.TZ2018007)。
文摘Thermal Protection System(TPS)with thick tiles,low thermal conductivity,and a short re-entry stage stands as a critical element within reusable aircraft,whose reliability is related to the function and changes with their physical properties,external conditions,and degradation.Meanwhile,due to the limitation of testing resources,epistemic uncertainties stemming from the small samples are present in TPS reliability modeling.However,current TPS reliability modeling methods face challenges in characterizing the relationships among reliability and physical properties,external conditions,degradation,and epistemic uncertainties.Therefore,under the framework of belief reliability theory,a TPS reliability model is constructed,which takes into account the physical principle,external conditions,performance degradation,and epistemic uncertainties.A reliability simulation algorithm is proposed to calculate TPS reliability.Through a case study and comparison analysis,the proposed method is validated as more effective than the existing method.Additionally,reliability sensitivity analysis is conducted to identify the sensitive factors of reliability under the condition of small samples,through which suggestions are provided for TPS functional design and improvement.
基金financially supported by the National Natural Science Foundation of China(No.52075072)the Provincial Applied Basic Research Program of Liaoning Provincial Department of Science and Technology(No.2023JH2/101300181)the Key R&D Program of Shandong Province,China(No.2022CXGC020408)。
文摘Technological advancements and the emphasis on reducing the use of hazardous materials,such as Pb,have led to the widely use of Sn-based Pb-free solder in advanced packaging technology.With the miniaturization of solder joints,Sn-based micro solder joints often contain single or limitedβ-Sn grains.The strong anisotropy ofβ-Sn,which is significantly correlated with the reliability of the micro solder joints during service,requires the development of methods for controlling the orientations of theseβ-Sn grains.In this review,we focus on the anisotropy of theβ-Sn grains in micro solder joints and the interactions betweenβ-Sn grain orientation and reliability issues concerning electromigration(EM),thermomigration(TM),EM+TM,corrosion process,tensile and shear creep behavior,thermal cycling(TC)and cryogenic temperature.Furthermore,we summarize the strategies for controlling theβ-Sn orientation in micro solder joints.The methods include changing the solder joint size and composition,adding additives,nucleating on specific substrates and interfacial intermetallic compounds,with the aid of external loads during solidification process and introducing heredity effect of theβ-Sn texture during multi-reflow.Finally,the{101}and{301}twinning models with∼60°rotations about a common〈100〉are adopted to explain the mechanism ofβ-Sn grain nucleation and morphology.The shortcomings of the existing methods and the further potential for the development in the field are discussed to promote the application of Pb-free solders in advanced packaging.
基金supported by grants from the Natural Science Foundation of Fujian Province(Grant No.2022J05184).
文摘The utilization of high-strength steel bars(HSSB)within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement.Nevertheless,existing design codes exhibit limitations in addressing the distinct statistical characteristics of HSSB,particularly regarding strength design parameters.For instance,GB50010-2010 fails to specify design strength values for reinforcement exceeding 600 MPa,creating technical barriers for advancing HSSB implementation.This study systematically investigates the reliability of eccentric compression concrete columns reinforced with 600 MPa-grade HSSB through high-order moment method analysis.Material partial factors were calibrated against target reliability indices prescribed by GB50068-2018,incorporating critical variables including live-to-dead load ratios,design methodologies,and service conditions.The findings show that the value of k significantly affects the calibration of material partial factors,impacting the reliability of bearing capacity.Considering various k values and target reliability indices,it is recommended that the material partialfactorbe setat1.15,implyingthatthedesignstrengthfor600MPahigh-strengthsteelbars shouldbe considered as 522 MPa.For safety levels I and II,load adjustment factors of 1.1 and 0.9,respectively,may be applied.
基金supported by the Science and Technology Project of China South Power Grid Co.,Ltd.,Grant Nos.036000KK52222044,GDKJXM20222430。
文摘The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system(ECS)designs that prioritize lifetime operational reliability.Traditional optimization approaches often simplify reliability considerations or fail to holistically integrate them with economic and technical constraints.This paper introduces a novel,two-stage optimization framework for offshore wind farm(OWF)ECS planning that systematically incorporates reliability.The first stage employs Mixed-Integer Linear Programming(MILP)to determine an optimal radial network topology,considering linearized reliability approximations and geographical constraints.The second stage enhances this design by strategically placing tie-lines using a Mixed-Integer Quadratically Constrained Program(MIQCP).This stage leverages a dynamic-aware adaptation of Multi-Source Multi-Terminal Network Reliability(MSMT-NR)assessment,with its inherent nonlinear equations successfully transformed into a solvable MIQCP form for loopy networks.A benchmark case study demonstrates the framework’s efficacy,illustrating how increasing the emphasis on reliability leads to more distributed and interconnected network topologies,effectively balancing investment costs against enhanced system resilience.
基金supports of the National Natural Science Foundation of China(Nos.12032008,12102080)the Fundamental Research Funds for the Central Universities,China(No.DUT23RC(3)038)are much appreciated。
文摘Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.
基金funded by the National Key Research and Development Program(Grant No.2022YFB3706904).
文摘Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis.