期刊文献+
共找到359,187篇文章
< 1 2 250 >
每页显示 20 50 100
Bayesian Computation for the Parameters of a Zero-Inflated Cosine Geometric Distribution with Application to COVID-19 Pandemic Data
1
作者 Sunisa Junnumtuam Sa-Aat Niwitpong Suparat Niwitpong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1229-1254,共26页
A new three-parameter discrete distribution called the zero-inflated cosine geometric(ZICG)distribution is proposed for the first time herein.It can be used to analyze over-dispersed count data with excess zeros.The b... A new three-parameter discrete distribution called the zero-inflated cosine geometric(ZICG)distribution is proposed for the first time herein.It can be used to analyze over-dispersed count data with excess zeros.The basic statistical properties of the new distribution,such as the moment generating function,mean,and variance are presented.Furthermore,confidence intervals are constructed by using the Wald,Bayesian,and highest posterior density(HPD)methods to estimate the true confidence intervals for the parameters of the ZICG distribution.Their efficacies were investigated by using both simulation and real-world data comprising the number of daily COVID-19 positive cases at the Olympic Games in Tokyo 2020.The results show that the HPD interval performed better than the other methods in terms of coverage probability and average length in most cases studied. 展开更多
关键词 Bayesian analysis confidence interval gibbs sampling random-walk metropolis zero-inflated count data
暂未订购
Comparative Assessment of Zero-Inflated Models with Application to HIV Exposed Infants Data
2
作者 Faith Nekesa Collins Odhiambo Linda Chaba 《Open Journal of Statistics》 2019年第6期664-685,共22页
In a typical Kenyan HIV clinical setting, there is a likelihood of registering many zeros during the routine monthly data collection of new HIV infections among HIV exposed infants (HEI). This is attributed to the imp... In a typical Kenyan HIV clinical setting, there is a likelihood of registering many zeros during the routine monthly data collection of new HIV infections among HIV exposed infants (HEI). This is attributed to the implementation of the prevention of mother to child transmission (PMTCT) policies. However, even though the PMTCT policy is implemented uniformly across all public health facilities, implementation naturally differs from every facility due to differential health systems and infrastructure. This leads to structured zero among reported positive HEI (where PMTCT implementation is optimum) and non-structured zero among reported positive HEI (where PMTCT implementation is not optimum). Hence the classical zero-inflated and hurdle models that do not account for the abundance of structured and non-structured zeros in the data can give misleading results. The purpose of this study is to systematically compare performance of the various zero-inflated models with an application to HIV Exposed Infants (HEI) in the context of structured and unstructured zeros. We revisit zero-inflated, hurdle models, Poisson and negative binomial count models and conduct the simulations by varying sample size and levels of abundance zeros. Results from simulation study and real data analysis of exposed infant diagnosis show the negative binomial emerging as the best performing model when fitting data with both structured and non-structured zeros under various settings. 展开更多
关键词 zero-inflated Models HIV EXPOSED INFANTS Structured Zeroes Mother-to-Child Transmission COUNT data
暂未订购
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
3
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
4
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
5
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Graph-Based Unified Settlement Framework for Complex Electricity Markets:Data Integration and Automated Refund Clearing
6
作者 Xiaozhe Guo Suyan Long +4 位作者 Ziyu Yue Yifan Wang Guanting Yin Yuyang Wang Zhaoyuan Wu 《Energy Engineering》 2026年第1期56-90,共35页
The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack... The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments. 展开更多
关键词 Electricity market market settlement data model graph database market refund clearing
在线阅读 下载PDF
Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments
7
作者 Yeasul Kim Chaeeun Won Hwankuk Kim 《Computers, Materials & Continua》 2026年第1期247-274,共28页
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp... With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy. 展开更多
关键词 Encrypted traffic attack detection data sampling technique AI-based detection IoT environment
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
8
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Individual Software Expertise Formalization and Assessment from Project Management Tool Databases
9
作者 Traian-Radu Plosca Alexandru-Mihai Pescaru +1 位作者 Bianca-Valeria Rus Daniel-Ioan Curiac 《Computers, Materials & Continua》 2026年第1期389-411,共23页
Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods... Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results. 展开更多
关键词 Expertise formalization transformer-based models natural language processing augmented data project management tool skill classification
在线阅读 下载PDF
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
10
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
AI-driven integration of multi-omics and multimodal data for precision medicine
11
作者 Heng-Rui Liu 《Medical Data Mining》 2026年第1期1-2,共2页
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ... High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1). 展开更多
关键词 high throughput transcriptomics multi omics single cell multimodal learning frameworks foundation models omics data modalitiesemerging ai driven precision medicine
在线阅读 下载PDF
Multimodal artificial intelligence integrates imaging,endoscopic,and omics data for intelligent decision-making in individualized gastrointestinal tumor treatment
12
作者 Hui Nian Yi-Bin Wu +5 位作者 Yu Bai Zhi-Long Zhang Xiao-Huang Tu Qi-Zhi Liu De-Hua Zhou Qian-Cheng Du 《Artificial Intelligence in Gastroenterology》 2026年第1期1-19,共19页
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ... Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies. 展开更多
关键词 Multimodal artificial intelligence Gastrointestinal tumors Individualized therapy Intelligent diagnosis Treatment optimization Prognostic prediction data fusion Deep learning Precision medicine
在线阅读 下载PDF
Cosmic Acceleration and the Hubble Tension from Baryon Acoustic Oscillation Data
13
作者 Xuchen Lu Shengqing Gao Yungui Gong 《Chinese Physics Letters》 2026年第1期327-332,共6页
We investigate the null tests of cosmic accelerated expansion by using the baryon acoustic oscillation(BAO)data measured by the dark energy spectroscopic instrument(DESI)and reconstruct the dimensionless Hubble parame... We investigate the null tests of cosmic accelerated expansion by using the baryon acoustic oscillation(BAO)data measured by the dark energy spectroscopic instrument(DESI)and reconstruct the dimensionless Hubble parameter E(z)from the DESI BAO Alcock-Paczynski(AP)data using Gaussian process to perform the null test.We find strong evidence of accelerated expansion from the DESI BAO AP data.By reconstructing the deceleration parameter q(z) from the DESI BAO AP data,we find that accelerated expansion persisted until z■0.7 with a 99.7%confidence level.Additionally,to provide insights into the Hubble tension problem,we propose combining the reconstructed E(z) with D_(H)/r_(d) data to derive a model-independent result r_(d)h=99.8±3.1 Mpc.This result is consistent with measurements from cosmic microwave background(CMB)anisotropies using the ΛCDM model.We also propose a model-independent method for reconstructing the comoving angular diameter distance D_(M)(z) from the distance modulus μ,using SNe Ia data and combining this result with DESI BAO data of D_(M)/r_(d) to constrain the value of r_(d).We find that the value of r_(d),derived from this model-independent method,is smaller than that obtained from CMB measurements,with a significant discrepancy of at least 4.17σ.All the conclusions drawn in this paper are independent of cosmological models and gravitational theories. 展开更多
关键词 baryon acoustic oscillation bao data cosmic accelerated expansion dimensionless hubble parameter reconstructing deceleration parameter null testwe accelerated expansion null tests gaussian process
原文传递
A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets
14
作者 Kwok Tai Chui Varsha Arya +2 位作者 Brij B.Gupta Miguel Torres-Ruiz Razaz Waheeb Attar 《Computers, Materials & Continua》 2026年第1期1410-1432,共23页
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d... Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested. 展开更多
关键词 Convolutional neural network data generation deep support vector machine feature extraction generative artificial intelligence imbalanced dataset medical diagnosis Parkinson’s disease small-scale dataset
在线阅读 下载PDF
Zero-Inflated Negative Binomial Regression Model with Right Censoring Count Data
15
作者 Seyed Ehsan Saffari Robiah Adnan 《材料科学与工程(中英文B版)》 2011年第4期551-554,共4页
关键词 回归模型 计数资料 二项式 零膨胀 估计标准误差 泊松模型 最大似然法 模型开发
在线阅读 下载PDF
Modelling tree mortality across diameter classes using mixedeffects zero-inflated models 被引量:4
16
作者 Yang Li Xingang Kang +1 位作者 Qing Zhang Weiwei Guo 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期131-140,共10页
The mortality of trees across diameter class model is a useful tool for predicting changes in stand structure.Mortality data commonly contain a large fraction of zeros and general discrete models thus show more errors... The mortality of trees across diameter class model is a useful tool for predicting changes in stand structure.Mortality data commonly contain a large fraction of zeros and general discrete models thus show more errors.Based on the traditional Poisson model and the negative binomial model,different forms of zero-inflated and hurdle models were applied to spruce-fir mixed forests data to simulate the number of dead trees.By comparing the residuals and Vuong test statistics,the zero-inflated negative binomial model performed best.A random effect was added to improve the model accuracy;however,the mixed-effects zero-inflated model did not show increased advantages.According to the model principle,the zeroinflated negative binomial model was the most suitable,indicating that the"0"events in this study,mainly from the sample"0",i.e.,the zero mortality data,are largely due to the limitations of the experimental design and sample selection.These results also show that the number of dead trees in the diameter class is positively correlated with the number of trees in that class and the mean stand diameter,and inversely related to class size,and slope and aspect of the site. 展开更多
关键词 Tree mortality Mixed forest zero-inflated model Hurdle model Mixed-effects
在线阅读 下载PDF
Study of Zero-Inflated Regression Models in a Large-Scale Population Survey of Sub-Health Status and Its Influencing Factors 被引量:1
17
作者 Tao Xu Guangjin Zhu Shaomei Han 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第4期218-225,共8页
Objective Sub-health status has progressively gained more attention from both medical professionals and the publics. Treating the number of sub-health symptoms as count data rather than dichotomous data helps to compl... Objective Sub-health status has progressively gained more attention from both medical professionals and the publics. Treating the number of sub-health symptoms as count data rather than dichotomous data helps to completely and accurately analyze findings in sub-healthy population. This study aims to compare the goodness of fit for count outcome models to identify the optimum model for sub-health study.Methods The sample of the study derived from a large-scale population survey on physiological and psychological constants from 2007 to 2011 in 4 provinces and 2 autonomous regions in China. We constructed four count outcome models using SAS: Poisson model, negative binomial (NB) model, zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) model. The number of sub-health symptoms was used as the main outcome measure. The alpha dispersion parameter and O test were used to identify over-dispersed data, and Vuong test was used to evaluate the excessive zero count. The goodness of fit of regression models were determined by predictive probability curves and statistics of likelihood ratio test.Results Of all 78 307 respondents, 38.53% reported no sub-health symptoms. The mean number of sub-health symptoms was 2.98, and the standard deviation was 3.72. The statistic O in over-dispersion test was 720.995 (P<0.001); the estimated alpha was 0.618 (95% CI: 0.600-0.636) comparing ZINB model and ZIP model; Vuong test statistic Z was 45.487. These results indicated over-dispersion of the data and excessive zero counts in this sub-health study. ZINB model had the largest log likelihood (-167 519), the smallest Akaike’s Information Criterion coefficient (335 112) and the smallest Bayesian information criterion coefficient (335455),indicating its best goodness of fit. The predictive probabilities for most counts in ZINB model fitted the observed counts best. The logit section of ZINB model analysis showed that age, sex, occupation, smoking, alcohol drinking, ethnicity and obesity were determinants for presence of sub-health symptoms; the binomial negative section of ZINB model analysis showed that sex, occupation, smoking, alcohol drinking, ethnicity, marital status and obesity had significant effect on the severity of sub-health.Conclusions All tests for goodness of fit and the predictive probability curve produced the same finding that ZINB model was the optimum model for exploring the influencing factors of sub-health symptoms. 展开更多
关键词 zero-inflated NEGATIVE BINOMIAL regression SUB-HEALTH POPULATION survey
暂未订购
Bivariate Zero-Inflated Power Series Distribution
18
作者 Patil Maruti Krishna Shirke Digambar Tukaram 《Applied Mathematics》 2011年第7期824-829,共6页
Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defect... Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate model. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed. 展开更多
关键词 BIVARIATE zero-inflated POWER SERIES DISTRIBUTION BIVARIATE zero-inflated POISSON DISTRIBUTION K-Variate zero-inflated POWER SERIES DISTRIBUTION
在线阅读 下载PDF
Zero-Inflated Exponential Distribution of Casualty Rate in Ship Collision
19
作者 HUANG Daozheng HU Hao LI Yizhou 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第6期739-744,共6页
There are two weaknesses in current researches into human casualty of ship collision.One is that the range of injuries or fatalities is restricted to the maximum number of casualties in a particular sample,which may n... There are two weaknesses in current researches into human casualty of ship collision.One is that the range of injuries or fatalities is restricted to the maximum number of casualties in a particular sample,which may not cover all the possible numbers of casualties in the future.International Maritime Organization(IMO)employed the injured or dead percentage of all the persons on board to represent casualties,but it only provided several discrete values to quantify human losses in different scenarios.The other is that the assumption that the distributions of the injuries or fatalities follow certain distribution,such as negative binomial and Poisson distributions is left to be statistically tested.Firstly,this study considers casualty rate,including injury and fatality rates,as random variables;the interval of the variables are from 0 to 1.Then,the distributions of the variables are investigated using historical data.From historical data,we can find that there are many zeros.Zeroinflated models are proved to be effective in processing data with inflated zeros.Furthermore,the probability density of the variables decreases rapidly as the casualty rate becomes larger.Thus,zero-inflated exponential distribution is assumed to fit the data.The parameters of zero-inflated exponential distribution are calibrated by maximum likelihood estimation(MLE)method.Finally,the assumption is tested by chi-square test.The zeroinflated exponential distribution can be used to generate human losses as a part of consequences in the simulation of ship collision risk. 展开更多
关键词 zero-inflated exponential distribution casualty rate COLLISION maritime accident
原文传递
Asymptotic Comparison of Method of Moments Estimators and Maximum Likelihood Estimators of Parameters in Zero-Inflated Poisson Model
20
作者 G. Nanjundan T. Raveendra Naika 《Applied Mathematics》 2012年第6期610-616,共7页
This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estima... This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estimators (MLEs). The results of a modest simulation study are presented. 展开更多
关键词 zero-inflated POISSON Model Maximum LIKELIHOOD and MOMENT ESTIMATORS EM Algorithm ASYMPTOTIC Relative Efficiency
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部