BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020,currently providing the positioning,navigation and timing service together with regional BDS-2.In addition to th...BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020,currently providing the positioning,navigation and timing service together with regional BDS-2.In addition to the legacy signals of B1I and B3I,the BDS-3 also transmits several new signals such as BIC,B2a and B2b,which brings new opportunities for rapid ambiguity resolution(AR)of BDS precise point positioning(PPP).In this contribution,a multi-frequency(MF)rapid PPP-AR method with regional network augmentation was proposed.Firstly,BDS five-frequency observations were introduced into uncombined double-differenced models to retrieve regional augmentation corrections at the server.Thereafter,a cascade PPP-AR strategy using extra-wide-lane,wide-lane and narrow-lane ambiguity was employed at the user.Once ambiguities were fixed to integers,the phase correction accuracy could reach about 3 cm on average overall BDS frequencies in the network with inter-station distances of 100-200 km.Subsequently,the statistical results of seven-day simulated kinematic experiments showed that over 99% of epochs on average realized PPP-AR.Correspondingly,the positioning accuracy of the MF fixed solution reached 1.8,1.9,4.7 cm in the east,north and up components,respectively,improving by 5-15% compared with the dual-frequency scheme.Moreover,several vehicle-borne experiments under different urban scenarios were also conducted.Under an open-sky or a relatively open highway scene,the BDS-MF scheme similarly exhibited good performance,and over 98% of epochs achieved rapid PPP-AR with a positioning accuracy better than 3 cm.More encouragingly,for this BDS-challenged experiment with an average satellite number of 8.6,although only 72.06% of epochs were available due to serious signal blockages caused by overpass,tunnels or tall buildings,the horizontal positioning accuracy could still remain 7 cm on average.展开更多
An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be imp...An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be improved by the regularized matrix. The relative floating ambiguity can be computed only by using the data of several epochs. Combined with the LAMBDA method, the new approach can correctly and quickly fix the integer ambiguity and the success rate is 100% in experiments. Through using measured data sets from four mediumlong baselines, the new method can obtain exact ambiguities only by the Ll-frequency data of three epochs. Compared with the existing methods, the improved method can solve the ambiguities of the medium-long baseline GPS network RTK only using L1-frequency GPS data.展开更多
For enhancing performances and increasing functions of PD radar, High PRF, medium PRF and low PRF are commonly applied into system ambiguity appeared in range and velocity in some PRF. Based on clustering, a slidin...For enhancing performances and increasing functions of PD radar, High PRF, medium PRF and low PRF are commonly applied into system ambiguity appeared in range and velocity in some PRF. Based on clustering, a sliding window correlator algorithm for resolving the radar object ambiguity in range and velocity is described. Slide window algorithm is a searching algorithm. The probability of ambiguity resolution for targets and the computational efficiency are discussed. The relations between the probability of ambiguity resolution of this algorithm and PRF, the range of interest, and the width of sliding window are analyzed. Simulational results are also given.展开更多
It is an attractive method to combine GPS observations with the information from other surveying system to improve the ambiguity resolution. This research is conducted to investigate how to obtain the prior height inf...It is an attractive method to combine GPS observations with the information from other surveying system to improve the ambiguity resolution. This research is conducted to investigate how to obtain the prior height information in bathymetric surveying by GPS positioning and how to use the prior height information and to obtain a robust result. The authors deal with the collection and the description of the prior height and the method using height validation to improve the ambiguity resolution. The principle of the method, the relationships between the height threshold and the ambiguity search space are presented. A method to determine the threshold for the height validation is suggested. The field tests are carried out to show the feasibility of the proposed methods.展开更多
When satellite navigation receivers are equipped with multiple antennas, they can deliver attitude information. In previous researches, carrier phase differencing measurement equations were built in the earth-centered...When satellite navigation receivers are equipped with multiple antennas, they can deliver attitude information. In previous researches, carrier phase differencing measurement equations were built in the earth-centered, earth-fixed (ECEF) co- ordinate, and attitude angles could be obtained through the rotation matrix between the body frame (BF) and the local level frame (LLF). Different from the conventional methods, a hybrid algorithm is presented to resolve attitude parameters utilizing the single differencing (SD) carrier phase equations established in LLF. Assuming that the cycle integer ambiguity is known, the measure- ment equations have attitude analytical resolutions by using simultaneous single difference equations for two in-view satellites. In addition, the algorithm is capable of reducing the search integer space into countable 2D discrete points and the ambiguity function method (AFM) resolves the ambiguity function within the analytical solutions space. In the case of frequency division multiple access (FDMA) for the Russian Global Orbiting Navigation Satellite System (GLONASS), a receiver clock bias estimation is employed to evaluate its carrier phase. An evaluating variable and a weighted factor are introduced to assess the integer ambiguity initialization. By static and dynamic ground experiments, the results show that the proposed approach is effective, with enough accuracy and low computation. It can satisfy attitude determination in cases of GPS alone and combined with GLONASS.展开更多
In recent years,the large Low Earth Orbit(LEO)constellations have become a hot topic due to their great potential to improve the Global Navigation Satellite Systems(GNSS)positioning performance.One of the important fo...In recent years,the large Low Earth Orbit(LEO)constellations have become a hot topic due to their great potential to improve the Global Navigation Satellite Systems(GNSS)positioning performance.One of the important focus is how to obtain the accurate and reliable orbits for these constellations with dozens of LEO satellites.The GNSS-based Precise Orbit Determination(POD)will be exclusively performed to achieve this goal,where the Integer Ambiguity Resolution(IAR)plays a key role in acquiring high-quality orbits.In this study,we present a comprehensive analysis of the benefit of the single-receiver IAR in LEO POD and discuss its implication for the future LEO constellations.We perform ambiguity-fixed LEO POD for four typical missions,including Gravity Recovery and Climate Experiment(GRACE)Follow-On(GRACE-FO),Swarm,Jason-3 and Sentinel-3,using the Uncalibrated Phase Delay(UPD)products generated by our GREAT(GNSS+REsearch,Application and Teaching)software.The results show that the ambiguity fixing processing can significantly improve the accuracy of LEO orbits.There are negligible differences between our UPD-based ambiguity-fixed orbits and those based on the Observable Signal Bias(OSB)and Integer Recovery Clock(IRC)products,indicating the good-quality of UPD products we generated.Compared to the float solution,the fixed solution presents a better consistency with the external precise science orbits and the largest accuracy improvement of 5 mm is achieved for GRACE-FO satellites.Meanwhile,the benefit can be observed in laser ranging residuals as well,with a Standard Deviation(STD)reduction of 3–4 mm on average for the fixed solutions.Apart from the absolute orbits,the relative accuracy of the space baseline is also improved by 20–30%in the fixed solutions.The result demonstrates the superior performance of the ambiguity-fixed LEO POD,which appears as a particularly promising technique for POD of future LEO constellations.展开更多
Precise point positioning with ambiguity resolution(PPP-AR)is a powerful tool for geodetic and time-constrained applications that require high precision.The performance of PPP-AR highly depends on the reliability of t...Precise point positioning with ambiguity resolution(PPP-AR)is a powerful tool for geodetic and time-constrained applications that require high precision.The performance of PPP-AR highly depends on the reliability of the correct integer carrier-phase ambiguity estimation.In this study,the performance of narrow-lane ambiguity resolution of PPP using the Least-squares AMBiguity Decorrelation(LAMBDA)and bootstrapping methods is extensively investigated using real data from 55 IGS stations over one-month in 2020.Static PPP with 24-,12-,8-,4-,2-,1-and½-h sessions using two different cutoff angles(7°and 30°)was conducted with three PPP modes:i.e.ambiguity-float and two kinds of ambiguity-fixed PPP using the LAMBDA and bootstrapping methods for narrow-lane AR,respectively.The results show that the LAMBDA method can produce more reliable results for 2 hour and shorter observation sessions com-pared with the bootstrapping method using a 7°cutoff angle.For a 30°cutoff angle,the LAMBDA method outperforms the bootstrapping method for observation sessions of 4 h and less.For long observation times,the bootstrapping method produced much more accurate coordinates compared with the LAMBDA method without considering the wrong fixes cases.The results also show that occurrences of fixing the wrong integer ambiguities using the bootstrapping method are higher than that of the LAMBDA method.展开更多
Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities amon...Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities among the angles of targets,which may result inmisinterpretation of such targets.In order to cope up with such ambiguities,various techniques have been proposed.Unfortunately,none of them fully resolved such a problem because of rank deficiency and high computational cost.We aimed to resolve such a problem by proposing an algorithm using differential geometry.The proposed algorithm uses a specially designed doublet antenna array,which is made up of two individual linear arrays.Two angle observation models,ambiguous observation model(AOM)and estimated observation model(EOM),are derived for each individual array.The ambiguous set of angles is contained in the AOM,which is obtained from the corresponding array elements using differential geometry.The EOM for each array,on the other hand,contains estimated angles of all sources impinging signals on each array,as calculated by a direction-finding algorithm such as the genetic algorithm.The algorithm then contrasts the EOM of each array with its AOM,selecting the output of that array whose EOM has the minimum correlation with its corresponding AOM.In comparison to existing techniques,the proposed algorithm improves estimation accuracy and has greater precision in antenna aperture selection,resulting in improved resolution capabilities and the potential to be used more widely in practical scenarios.The simulation results using MATLAB authenticates the effectiveness of the proposed algorithm.展开更多
It is a main form using the main beamwidth of the ambiguity function to judge the signal resolution, in which the range or Doppler resolution of the signals are investigated for the targets close to each other. Howeve...It is a main form using the main beamwidth of the ambiguity function to judge the signal resolution, in which the range or Doppler resolution of the signals are investigated for the targets close to each other. However, for the pulse signal with rectangular envelope, if the nominal range resolution is calculated from the classic definition, there exists the problem of infinite integral for the high power terms of sine function, and a definite result could not be obtained. Though a definite solution of the nominal velocity resolution can be calculated from the definition, the calculation for the signal consisting of multiple-pulse, especially several periods, is very complex. The paper begins with the physical meaning of nominal resolution rather than from the definition formula to solve the problem using the ambiguity matrix, and make the calculation simplified greatly.展开更多
Global navigation satellite system(GNSS)positioning depends on the correct integer ambiguity resolu-tion(AR).If the double difference equation for solving the float solution remains il-conditioned,often happening due ...Global navigation satellite system(GNSS)positioning depends on the correct integer ambiguity resolu-tion(AR).If the double difference equation for solving the float solution remains il-conditioned,often happening due to the environment complexity and the equipment mobility,the corrcct AR is difficult to achieve.Concern-ing the il-conditioned problem,methods of modifying the equation cofficient matrix are widely applied,whose effects are heavily dependent on modifying parameters.Besides,the direct inversion of the il-conditioned coef-ficient matrix can lead to a reduction in the accuracy and stability of the float solution.To solve the problem of il-conditioned matrix inversion and further improve the accuracy,the present study for the first time proves the positive definite symmetry of the coefficient matrix in AR model and employs precise integration method to the indirect inverse of cofficient matrix.AR model for the GNSS positioning and the general resolving strate-gies introduction are briefly introduced.An indirect-inversion algorithm via precise integration for il-conditioned coefficient matrix is proposed.According to the simulations and comparisons,the proposed strategy has higher precision and stability on foat solution,and less dependence on modifying parameters.展开更多
Language ambiguity resolution has been widely studied by psycholinguists.Studies of lexical ambiguity resolution,syntactic ambiguity resolution and anaphoric ambiguity resolution have showed different results.One acco...Language ambiguity resolution has been widely studied by psycholinguists.Studies of lexical ambiguity resolution,syntactic ambiguity resolution and anaphoric ambiguity resolution have showed different results.One account assumes that ambiguity resolution involves"competition"of analysis which causes processing difficulties.The other account claims that an initial analysis is adopt and"reanalysis"occurs when the initial analysis turns out to be implausible.展开更多
A method, called class multiple signal classification (CMUSIC), is proposed to estimate high-resolution radial velocity in each pulse train (subband, i.e. narrowband) with M pulses based on stepped frequency pulse...A method, called class multiple signal classification (CMUSIC), is proposed to estimate high-resolution radial velocity in each pulse train (subband, i.e. narrowband) with M pulses based on stepped frequency pulse trains (SFPTs) signal. A synthetic ultra-wideband (UWB) high-resolution range profile (HRRP) is then obtained by fast Fourier transform (FFT) processing along the subbands after compensating the range-Doppler coupling and Doppler dispersion with the estimated velocity. Compared with the other methods, CMUSIC has fine performance of velocity estimation at low signal-to-noise ratio (SNR) level. This method also has excellent performance with small Mas long as the requirement, i.e. Mis large than Q, is able to be fulfilled, where Q is the number of targets with different radial velocities. In addition, through a radial velocity resolving, the method can be well suitable for targets moving at high radial velocities, which has significant practical value with considerable progress made in the national defence technology and the advanced vehicles moving at high speed springing up. Simulation results demonstrate the feasibility and effectiveness of the method.展开更多
Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has sig...Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has significant cost implications.Precise Point Positioning(PPP)on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks,hence providing significant cost benefits especially in remote areas.This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities.Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method.A new method to detect and exclude GPS base-satellite failures is developed.A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position.The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes.The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases.In the kinematic processing cases,failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.展开更多
In this paper, the spatial resolutions at different directions of bistatic synthetic aperture radar (BiSAR) have been derived from the ambiguity function. Compared with monostatic signal to noise ratio, BiSAR's res...In this paper, the spatial resolutions at different directions of bistatic synthetic aperture radar (BiSAR) have been derived from the ambiguity function. Compared with monostatic signal to noise ratio, BiSAR's resolutions of a fixed point target are varying with slow time since BiSAR system is space-variant. Constraints for the assumption of space-invariant bistatic topology are proposed in the paper. Moreover, under the assumption of invariance, the change of resolutions at different point in the image scene is taken into account, and we have specified two key parameters that affect resolutions directly and analyzed the way how they influence on the resolutions.展开更多
Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
High acceleration of radar targets is analyzed using Acceleration Ambiguity Function (AAF). The acceleration resolution based on AAF is defined. The AAF and acceleration resolution of rectangle pulse signal are deriva...High acceleration of radar targets is analyzed using Acceleration Ambiguity Function (AAF). The acceleration resolution based on AAF is defined. The AAF and acceleration resolution of rectangle pulse signal are derivated and the conclusion that its acceleration resolution is in inverse proportion with the square of its duration is drawn. In the end, these conclusions are applied to the parameter designing and performance evaluation for a certain type of pulse Doppler radar.展开更多
Among all the ambiguity resolution techniques,the Full Ambiguity Resolution(FAR),Partial Ambiguity Resolution(PAR)and Best Integer Equivariant(BIE)estimator are widely used.Although the researches have been done on th...Among all the ambiguity resolution techniques,the Full Ambiguity Resolution(FAR),Partial Ambiguity Resolution(PAR)and Best Integer Equivariant(BIE)estimator are widely used.Although the researches have been done on the different classes of ambiguity resolution,we still hope to find the relationships among these specific algorithms.In this work,we unify the PAR and FAR algorithms under a whole framework of BIE by applying multiple integer candidates.A concise estimation formula of the variance of Gaussian BIE estimator based on the variance of float solution and the probability distribution of the candidates is first derived.Then,we propose an algorithm named Multiple Integer Candidates Ambiguity Resolution(MICAR)to discover as many ambiguities in the BIE as possible that can be estimated more precisely by PAR(FAR)algorithm instead of BIE.In the experiments,we utilize the simulated data of GPS(Global Positioning System)+BDS(BeiDou Navigation Satellite System)+Galileo(Galileo navigation satellite system)to contrast the effects of MICAR and single candidate estimator,i.e.,FAR.By taking the threshold of 5 cm at 95%confidence level as an example,MICAR accelerates the convergence process by about 3.0 min.When the positioning sequence converges,MICAR reduces the root mean square of the positioning error by 9.8%in horizontal directions and 3.5%in vertical direction,which is attributed to more fixed NL.展开更多
哨兵(Sentinel)-6A海洋测高卫星搭载了GPS/Galileo双模接收机,为研究基于全球导航卫星系统多星座的低轨卫星精密定轨提供了契机。固定载波相位模糊度可提升低轨卫星的定轨精度,利用在轨实测数据研究GPS/Galileo双系统组合以及模糊度固...哨兵(Sentinel)-6A海洋测高卫星搭载了GPS/Galileo双模接收机,为研究基于全球导航卫星系统多星座的低轨卫星精密定轨提供了契机。固定载波相位模糊度可提升低轨卫星的定轨精度,利用在轨实测数据研究GPS/Galileo双系统组合以及模糊度固定对低轨卫星运动学定轨精度的影响。分别采用欧洲定轨中心(Center for Orbit Determination in Europe,CODE)、法国国家空间研究中心(Centre National d’Etudes Spatiales,CNES)、德国地学研究中心(German Research Centre for Geosciences,GFZ)和中国武汉大学(Wuhan University,WHU)发布的观测值偏差及对应的精密星历和钟差产品开展单接收机模糊度固定。结果表明:GPS/Galileo双系统组合可明显改善定轨几何构型。双系统组合浮点解轨道三维精度优于30 mm,相对于GPS单系统提升超过20%。模糊度固定显著提升了运动学定轨精度,组合固定解轨道精度优于20 mm,相对于GPS提升30%。基于CODE、CNES和GFZ产品的GPS和Galileo单系统模糊度固定率分别优于93%和95%,WHU产品的Galileo固定率则偏低。利用卫星激光测距(satellite laser ranging,SLR)观测数据对运动学定轨结果进行检核,单系统固定解轨道SLR残差均方根误差(root mean square,RMS)为13~15 mm,双系统组合固定解RMS则达到12~14 mm,提升超过10%。展开更多
基金supported by the National Natural Science Foundation of China[Grant 41774030,Grant 41974027 and Grant 41974029]the Hubei Province Natural Science Foundation of China[Grant 2018CFA081]+1 种基金the frontier project of basic application from Wuhan science and technology bureau[Grant 2019010701011395]the Sino-German mobility programme[Grant No.M-0054].
文摘BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020,currently providing the positioning,navigation and timing service together with regional BDS-2.In addition to the legacy signals of B1I and B3I,the BDS-3 also transmits several new signals such as BIC,B2a and B2b,which brings new opportunities for rapid ambiguity resolution(AR)of BDS precise point positioning(PPP).In this contribution,a multi-frequency(MF)rapid PPP-AR method with regional network augmentation was proposed.Firstly,BDS five-frequency observations were introduced into uncombined double-differenced models to retrieve regional augmentation corrections at the server.Thereafter,a cascade PPP-AR strategy using extra-wide-lane,wide-lane and narrow-lane ambiguity was employed at the user.Once ambiguities were fixed to integers,the phase correction accuracy could reach about 3 cm on average overall BDS frequencies in the network with inter-station distances of 100-200 km.Subsequently,the statistical results of seven-day simulated kinematic experiments showed that over 99% of epochs on average realized PPP-AR.Correspondingly,the positioning accuracy of the MF fixed solution reached 1.8,1.9,4.7 cm in the east,north and up components,respectively,improving by 5-15% compared with the dual-frequency scheme.Moreover,several vehicle-borne experiments under different urban scenarios were also conducted.Under an open-sky or a relatively open highway scene,the BDS-MF scheme similarly exhibited good performance,and over 98% of epochs achieved rapid PPP-AR with a positioning accuracy better than 3 cm.More encouragingly,for this BDS-challenged experiment with an average satellite number of 8.6,although only 72.06% of epochs were available due to serious signal blockages caused by overpass,tunnels or tall buildings,the horizontal positioning accuracy could still remain 7 cm on average.
文摘An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be improved by the regularized matrix. The relative floating ambiguity can be computed only by using the data of several epochs. Combined with the LAMBDA method, the new approach can correctly and quickly fix the integer ambiguity and the success rate is 100% in experiments. Through using measured data sets from four mediumlong baselines, the new method can obtain exact ambiguities only by the Ll-frequency data of three epochs. Compared with the existing methods, the improved method can solve the ambiguities of the medium-long baseline GPS network RTK only using L1-frequency GPS data.
文摘For enhancing performances and increasing functions of PD radar, High PRF, medium PRF and low PRF are commonly applied into system ambiguity appeared in range and velocity in some PRF. Based on clustering, a sliding window correlator algorithm for resolving the radar object ambiguity in range and velocity is described. Slide window algorithm is a searching algorithm. The probability of ambiguity resolution for targets and the computational efficiency are discussed. The relations between the probability of ambiguity resolution of this algorithm and PRF, the range of interest, and the width of sliding window are analyzed. Simulational results are also given.
文摘It is an attractive method to combine GPS observations with the information from other surveying system to improve the ambiguity resolution. This research is conducted to investigate how to obtain the prior height information in bathymetric surveying by GPS positioning and how to use the prior height information and to obtain a robust result. The authors deal with the collection and the description of the prior height and the method using height validation to improve the ambiguity resolution. The principle of the method, the relationships between the height threshold and the ambiguity search space are presented. A method to determine the threshold for the height validation is suggested. The field tests are carried out to show the feasibility of the proposed methods.
文摘When satellite navigation receivers are equipped with multiple antennas, they can deliver attitude information. In previous researches, carrier phase differencing measurement equations were built in the earth-centered, earth-fixed (ECEF) co- ordinate, and attitude angles could be obtained through the rotation matrix between the body frame (BF) and the local level frame (LLF). Different from the conventional methods, a hybrid algorithm is presented to resolve attitude parameters utilizing the single differencing (SD) carrier phase equations established in LLF. Assuming that the cycle integer ambiguity is known, the measure- ment equations have attitude analytical resolutions by using simultaneous single difference equations for two in-view satellites. In addition, the algorithm is capable of reducing the search integer space into countable 2D discrete points and the ambiguity function method (AFM) resolves the ambiguity function within the analytical solutions space. In the case of frequency division multiple access (FDMA) for the Russian Global Orbiting Navigation Satellite System (GLONASS), a receiver clock bias estimation is employed to evaluate its carrier phase. An evaluating variable and a weighted factor are introduced to assess the integer ambiguity initialization. By static and dynamic ground experiments, the results show that the proposed approach is effective, with enough accuracy and low computation. It can satisfy attitude determination in cases of GPS alone and combined with GLONASS.
基金National Natural Science Foundation of China[41974027]Sino-German mobility programme[M-0054].
文摘In recent years,the large Low Earth Orbit(LEO)constellations have become a hot topic due to their great potential to improve the Global Navigation Satellite Systems(GNSS)positioning performance.One of the important focus is how to obtain the accurate and reliable orbits for these constellations with dozens of LEO satellites.The GNSS-based Precise Orbit Determination(POD)will be exclusively performed to achieve this goal,where the Integer Ambiguity Resolution(IAR)plays a key role in acquiring high-quality orbits.In this study,we present a comprehensive analysis of the benefit of the single-receiver IAR in LEO POD and discuss its implication for the future LEO constellations.We perform ambiguity-fixed LEO POD for four typical missions,including Gravity Recovery and Climate Experiment(GRACE)Follow-On(GRACE-FO),Swarm,Jason-3 and Sentinel-3,using the Uncalibrated Phase Delay(UPD)products generated by our GREAT(GNSS+REsearch,Application and Teaching)software.The results show that the ambiguity fixing processing can significantly improve the accuracy of LEO orbits.There are negligible differences between our UPD-based ambiguity-fixed orbits and those based on the Observable Signal Bias(OSB)and Integer Recovery Clock(IRC)products,indicating the good-quality of UPD products we generated.Compared to the float solution,the fixed solution presents a better consistency with the external precise science orbits and the largest accuracy improvement of 5 mm is achieved for GRACE-FO satellites.Meanwhile,the benefit can be observed in laser ranging residuals as well,with a Standard Deviation(STD)reduction of 3–4 mm on average for the fixed solutions.Apart from the absolute orbits,the relative accuracy of the space baseline is also improved by 20–30%in the fixed solutions.The result demonstrates the superior performance of the ambiguity-fixed LEO POD,which appears as a particularly promising technique for POD of future LEO constellations.
文摘Precise point positioning with ambiguity resolution(PPP-AR)is a powerful tool for geodetic and time-constrained applications that require high precision.The performance of PPP-AR highly depends on the reliability of the correct integer carrier-phase ambiguity estimation.In this study,the performance of narrow-lane ambiguity resolution of PPP using the Least-squares AMBiguity Decorrelation(LAMBDA)and bootstrapping methods is extensively investigated using real data from 55 IGS stations over one-month in 2020.Static PPP with 24-,12-,8-,4-,2-,1-and½-h sessions using two different cutoff angles(7°and 30°)was conducted with three PPP modes:i.e.ambiguity-float and two kinds of ambiguity-fixed PPP using the LAMBDA and bootstrapping methods for narrow-lane AR,respectively.The results show that the LAMBDA method can produce more reliable results for 2 hour and shorter observation sessions com-pared with the bootstrapping method using a 7°cutoff angle.For a 30°cutoff angle,the LAMBDA method outperforms the bootstrapping method for observation sessions of 4 h and less.For long observation times,the bootstrapping method produced much more accurate coordinates compared with the LAMBDA method without considering the wrong fixes cases.The results also show that occurrences of fixing the wrong integer ambiguities using the bootstrapping method are higher than that of the LAMBDA method.
文摘Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities among the angles of targets,which may result inmisinterpretation of such targets.In order to cope up with such ambiguities,various techniques have been proposed.Unfortunately,none of them fully resolved such a problem because of rank deficiency and high computational cost.We aimed to resolve such a problem by proposing an algorithm using differential geometry.The proposed algorithm uses a specially designed doublet antenna array,which is made up of two individual linear arrays.Two angle observation models,ambiguous observation model(AOM)and estimated observation model(EOM),are derived for each individual array.The ambiguous set of angles is contained in the AOM,which is obtained from the corresponding array elements using differential geometry.The EOM for each array,on the other hand,contains estimated angles of all sources impinging signals on each array,as calculated by a direction-finding algorithm such as the genetic algorithm.The algorithm then contrasts the EOM of each array with its AOM,selecting the output of that array whose EOM has the minimum correlation with its corresponding AOM.In comparison to existing techniques,the proposed algorithm improves estimation accuracy and has greater precision in antenna aperture selection,resulting in improved resolution capabilities and the potential to be used more widely in practical scenarios.The simulation results using MATLAB authenticates the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(No.60232010)
文摘It is a main form using the main beamwidth of the ambiguity function to judge the signal resolution, in which the range or Doppler resolution of the signals are investigated for the targets close to each other. However, for the pulse signal with rectangular envelope, if the nominal range resolution is calculated from the classic definition, there exists the problem of infinite integral for the high power terms of sine function, and a definite result could not be obtained. Though a definite solution of the nominal velocity resolution can be calculated from the definition, the calculation for the signal consisting of multiple-pulse, especially several periods, is very complex. The paper begins with the physical meaning of nominal resolution rather than from the definition formula to solve the problem using the ambiguity matrix, and make the calculation simplified greatly.
文摘Global navigation satellite system(GNSS)positioning depends on the correct integer ambiguity resolu-tion(AR).If the double difference equation for solving the float solution remains il-conditioned,often happening due to the environment complexity and the equipment mobility,the corrcct AR is difficult to achieve.Concern-ing the il-conditioned problem,methods of modifying the equation cofficient matrix are widely applied,whose effects are heavily dependent on modifying parameters.Besides,the direct inversion of the il-conditioned coef-ficient matrix can lead to a reduction in the accuracy and stability of the float solution.To solve the problem of il-conditioned matrix inversion and further improve the accuracy,the present study for the first time proves the positive definite symmetry of the coefficient matrix in AR model and employs precise integration method to the indirect inverse of cofficient matrix.AR model for the GNSS positioning and the general resolving strate-gies introduction are briefly introduced.An indirect-inversion algorithm via precise integration for il-conditioned coefficient matrix is proposed.According to the simulations and comparisons,the proposed strategy has higher precision and stability on foat solution,and less dependence on modifying parameters.
文摘Language ambiguity resolution has been widely studied by psycholinguists.Studies of lexical ambiguity resolution,syntactic ambiguity resolution and anaphoric ambiguity resolution have showed different results.One account assumes that ambiguity resolution involves"competition"of analysis which causes processing difficulties.The other account claims that an initial analysis is adopt and"reanalysis"occurs when the initial analysis turns out to be implausible.
文摘A method, called class multiple signal classification (CMUSIC), is proposed to estimate high-resolution radial velocity in each pulse train (subband, i.e. narrowband) with M pulses based on stepped frequency pulse trains (SFPTs) signal. A synthetic ultra-wideband (UWB) high-resolution range profile (HRRP) is then obtained by fast Fourier transform (FFT) processing along the subbands after compensating the range-Doppler coupling and Doppler dispersion with the estimated velocity. Compared with the other methods, CMUSIC has fine performance of velocity estimation at low signal-to-noise ratio (SNR) level. This method also has excellent performance with small Mas long as the requirement, i.e. Mis large than Q, is able to be fulfilled, where Q is the number of targets with different radial velocities. In addition, through a radial velocity resolving, the method can be well suitable for targets moving at high radial velocities, which has significant practical value with considerable progress made in the national defence technology and the advanced vehicles moving at high speed springing up. Simulation results demonstrate the feasibility and effectiveness of the method.
文摘Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has significant cost implications.Precise Point Positioning(PPP)on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks,hence providing significant cost benefits especially in remote areas.This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities.Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method.A new method to detect and exclude GPS base-satellite failures is developed.A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position.The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes.The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases.In the kinematic processing cases,failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.
文摘In this paper, the spatial resolutions at different directions of bistatic synthetic aperture radar (BiSAR) have been derived from the ambiguity function. Compared with monostatic signal to noise ratio, BiSAR's resolutions of a fixed point target are varying with slow time since BiSAR system is space-variant. Constraints for the assumption of space-invariant bistatic topology are proposed in the paper. Moreover, under the assumption of invariance, the change of resolutions at different point in the image scene is taken into account, and we have specified two key parameters that affect resolutions directly and analyzed the way how they influence on the resolutions.
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.
文摘High acceleration of radar targets is analyzed using Acceleration Ambiguity Function (AAF). The acceleration resolution based on AAF is defined. The AAF and acceleration resolution of rectangle pulse signal are derivated and the conclusion that its acceleration resolution is in inverse proportion with the square of its duration is drawn. In the end, these conclusions are applied to the parameter designing and performance evaluation for a certain type of pulse Doppler radar.
基金National Natural Science Foundation of China,42174029,Shengfeng Gu.
文摘Among all the ambiguity resolution techniques,the Full Ambiguity Resolution(FAR),Partial Ambiguity Resolution(PAR)and Best Integer Equivariant(BIE)estimator are widely used.Although the researches have been done on the different classes of ambiguity resolution,we still hope to find the relationships among these specific algorithms.In this work,we unify the PAR and FAR algorithms under a whole framework of BIE by applying multiple integer candidates.A concise estimation formula of the variance of Gaussian BIE estimator based on the variance of float solution and the probability distribution of the candidates is first derived.Then,we propose an algorithm named Multiple Integer Candidates Ambiguity Resolution(MICAR)to discover as many ambiguities in the BIE as possible that can be estimated more precisely by PAR(FAR)algorithm instead of BIE.In the experiments,we utilize the simulated data of GPS(Global Positioning System)+BDS(BeiDou Navigation Satellite System)+Galileo(Galileo navigation satellite system)to contrast the effects of MICAR and single candidate estimator,i.e.,FAR.By taking the threshold of 5 cm at 95%confidence level as an example,MICAR accelerates the convergence process by about 3.0 min.When the positioning sequence converges,MICAR reduces the root mean square of the positioning error by 9.8%in horizontal directions and 3.5%in vertical direction,which is attributed to more fixed NL.
文摘哨兵(Sentinel)-6A海洋测高卫星搭载了GPS/Galileo双模接收机,为研究基于全球导航卫星系统多星座的低轨卫星精密定轨提供了契机。固定载波相位模糊度可提升低轨卫星的定轨精度,利用在轨实测数据研究GPS/Galileo双系统组合以及模糊度固定对低轨卫星运动学定轨精度的影响。分别采用欧洲定轨中心(Center for Orbit Determination in Europe,CODE)、法国国家空间研究中心(Centre National d’Etudes Spatiales,CNES)、德国地学研究中心(German Research Centre for Geosciences,GFZ)和中国武汉大学(Wuhan University,WHU)发布的观测值偏差及对应的精密星历和钟差产品开展单接收机模糊度固定。结果表明:GPS/Galileo双系统组合可明显改善定轨几何构型。双系统组合浮点解轨道三维精度优于30 mm,相对于GPS单系统提升超过20%。模糊度固定显著提升了运动学定轨精度,组合固定解轨道精度优于20 mm,相对于GPS提升30%。基于CODE、CNES和GFZ产品的GPS和Galileo单系统模糊度固定率分别优于93%和95%,WHU产品的Galileo固定率则偏低。利用卫星激光测距(satellite laser ranging,SLR)观测数据对运动学定轨结果进行检核,单系统固定解轨道SLR残差均方根误差(root mean square,RMS)为13~15 mm,双系统组合固定解RMS则达到12~14 mm,提升超过10%。