This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
This article concerns the construction of approximate solutions for a general stochastic integrodifferential equation which is not explicitly solvable and whose coeffcients functionally depend on Lebesgue integrals an...This article concerns the construction of approximate solutions for a general stochastic integrodifferential equation which is not explicitly solvable and whose coeffcients functionally depend on Lebesgue integrals and stochastic integrals with respect to martingales. The approximate equations are linear ordinary stochastic differential equations, the solutions of which are defined on sub-intervals of an arbitrary partition of the time interval and connected at successive division points. The closeness of the initial and approximate solutions is measured in the L^p-th norm, uniformly on the time interval. The convergence with probability one is also given.展开更多
Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best...Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best approximations to elements of X.We also give simultaneous characterization of elements of best approximation and also consider elements of ε-approximation.展开更多
In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a<sub>1</sub>(x)f<sup>1</sup>(x)dx+ sum from f=0 to i<sub>1&...In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a<sub>1</sub>(x)f<sup>1</sup>(x)dx+ sum from f=0 to i<sub>1</sub>(b<sub>1</sub>f<sup>1</sup>(x<sub>1</sub>))]) by a simpler linear functional Lf=sum from i=1 to m(a<sub>1</sub>f(x<sub>1</sub>)) In this paper, making use of natural Tchebysheff spline function, we give existence theorem and uniqueness theorem of L that is exact for the degree m to F; we also give three sufficient and necessary conditions in which L is the Sard best approximation to F.展开更多
Nonlinear approximation is widely used in signal processing. Real-life signals can be modeled as functions of bounded variation. Thus the variable knot of approximating function could be self- adaptively chosen by bal...Nonlinear approximation is widely used in signal processing. Real-life signals can be modeled as functions of bounded variation. Thus the variable knot of approximating function could be self- adaptively chosen by balancing the total variation of the target function. In this paper, we adopt continuous piecewise linear approximation instead of the existing piecewise constants approximation. The results of experiments show that this new method is superior to the old one.展开更多
Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we pro...Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we propose an approach for estimating nonlinear damping that involves a linear exponential analytical approximation of the experimental roll free-decay amplitudes, fol- lowed by parametric identification based on the asymptotic method. The restoring moment can be strongly nonlinear. To validate this method, we first analyzed numerically simulated roll free-decay data using rolling equations with two alternative parametric forms: linear-plus-quadratic and linear-plus-cubic damping. By doing so, we obtained accurate estimates of nonlinear damping coefficients, even for large initial roll amplitudes. Then, we applied the proposed method to real free-decay data obtained from a scale model of a bulk barrier, and found the simulated results to be in good agreement with the experimental data. Using only free-decay peak data, the proposed method can be used to estimate nonlinear roll-damping coefficients for conditions with a strongly nonlinear restoring moment and large initial roll amplitudes.展开更多
For an arbitrary tensor(multi-index array) with linear constraints at each direction,it is proved that the factors of any minimal canonical tensor approximation to this tensor satisfy the same linear constraints for t...For an arbitrary tensor(multi-index array) with linear constraints at each direction,it is proved that the factors of any minimal canonical tensor approximation to this tensor satisfy the same linear constraints for the corresponding directions.展开更多
A method of approaching to the infinite dimensional linear operators by the finite dimensional operators is discussed. It is shown that,for every infinite dimensional operator A and every natural number n, there exist...A method of approaching to the infinite dimensional linear operators by the finite dimensional operators is discussed. It is shown that,for every infinite dimensional operator A and every natural number n, there exists an n dimensional optimal approximation to A. The norm error is found and the necessary and sufficient condition for such n dimensional optimal approximations to be unique is obtained.展开更多
In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the wh...In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the whole real axis. The properties of approximation are studied and their asymptotic formulae are presented. These results show that their degrees of approximation are the best among existing operator sequences of Landau type, for example, their degrees of approximation for C 2[0, 1] are O(1/n 2) but corresponding degree of ordinary Landau operators are only O(1/n).展开更多
In this work we slwly linear polynomial operators preserving some consecutive i-convexities and leaving in-verant the polynomtals up to a certain degree. First we study the existence of an incompatibility between the ...In this work we slwly linear polynomial operators preserving some consecutive i-convexities and leaving in-verant the polynomtals up to a certain degree. First we study the existence of an incompatibility between the conservation of cenain i-cotivexities and the invariance of a space of polynomials. Interpolation properties are obtained and a theorem by Berens and DcVore about the Bernstein's operator ts extended. Finally, from these results a genera'ized Bernstein's operator is obtained.展开更多
A method of linear momentum approximation is proposed that deals with weak nonlinear problems in an approximate manner. A motion of nonlinear nature is obtained in the system by assuming the motion to be in the form o...A method of linear momentum approximation is proposed that deals with weak nonlinear problems in an approximate manner. A motion of nonlinear nature is obtained in the system by assuming the motion to be in the form of linear momentum flow in the corresponding space introduced, followed by the transformation from the specified into a physical space. Significant results have been thereby derived in examining the effects of baroclinic Ekman momentum flow upon Eady-type baroclinic waves and frontogenesis. Also, this technique can be applied to investigate the dynamic characteristics of the weak nonlinear boundary layer including topography, stratification and non-Ekmantype friction for gaining further insight into the influence on the boundary layer inner parameters of terrain, baroclinicity and inhomogeneous process so that the classic theory is revised.展开更多
Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependen...Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependent random variables. Under the conditions of {αk, k ≥ 0} which entail that {Xt, t ≥ 1} is either a long memory process or a linear process, the strong approximation of {Xt, t ≥ 1} to a Gaussian process is studied. Finally, the results are applied to obtain the strong approximation of a long memory process to a fractional Brownian motion and the laws of the iterated logarithm for moving average processes.展开更多
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feed...This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system.According to AFL approach,we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately.The resulting AFL control is constructed in the form of asymptotic composition(composite control).Standard procedure for the composite control design consists of the following steps:1)system decomposition,2)solution of control problem for fast subsystem,3)solution of control problem for slow subsystem,4)construction of the resulting control in the form of the composition of slow and fast controls.The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system.To overcome this,we propose to change the sequence of the design procedure:1)solving the control problem for fast state variables part,2)system decomposition,3)solving the control problem for slow state variables part,4)construction of the resulting composite control.By this way,fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable.The application of the proposed approach is illustrated through several examples.展开更多
By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive...By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.展开更多
High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms...High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms, the approximation formula under the least mean square error criterion is derived. For the iterative algorithms, a modified CORDIC (coordinate rotation digital computer) algorithm is developed. This modified CORDIC algorithm is proved to be with a maximum relative error about one half that of the original CORDIC algorithm. Finally, the effects of the finite register length on these algorithms are also concerned, which shows that 9 to 12-bit coefficients are sufficient for practical applications.展开更多
Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be a...Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.展开更多
There exist many iterative methods for computing the maximum likelihood estimator but most of them suffer from one or several drawbacks such as the need to inverse a Hessian matrix and the need to find good initial ap...There exist many iterative methods for computing the maximum likelihood estimator but most of them suffer from one or several drawbacks such as the need to inverse a Hessian matrix and the need to find good initial approximations of the parameters that are unknown in practice. In this paper, we present an estimation method without matrix inversion based on a linear approximation of the likelihood equations in a neighborhood of the constrained maximum likelihood estimator. We obtain closed-form approximations of solutions and standard errors. Then, we propose an iterative algorithm which cycles through the components of the vector parameter and updates one component at a time. The initial solution, which is necessary to start the iterative procedure, is automated. The proposed algorithm is compared to some of the best iterative optimization algorithms available on R and MATLAB software through a simulation study and applied to the statistical analysis of a road safety measure.展开更多
In this present paper, firstly, the modified positive operators and their discrete operators are constructed. Then, we investigate the statistical approximation properties and rates of convergence by using modulus of ...In this present paper, firstly, the modified positive operators and their discrete operators are constructed. Then, we investigate the statistical approximation properties and rates of convergence by using modulus of continuity of these positive linear operators. Finally, we obtain the rate of statistical convergence of truncated operators.展开更多
A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex...A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.展开更多
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
文摘This article concerns the construction of approximate solutions for a general stochastic integrodifferential equation which is not explicitly solvable and whose coeffcients functionally depend on Lebesgue integrals and stochastic integrals with respect to martingales. The approximate equations are linear ordinary stochastic differential equations, the solutions of which are defined on sub-intervals of an arbitrary partition of the time interval and connected at successive division points. The closeness of the initial and approximate solutions is measured in the L^p-th norm, uniformly on the time interval. The convergence with probability one is also given.
文摘Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best approximations to elements of X.We also give simultaneous characterization of elements of best approximation and also consider elements of ε-approximation.
文摘In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a<sub>1</sub>(x)f<sup>1</sup>(x)dx+ sum from f=0 to i<sub>1</sub>(b<sub>1</sub>f<sup>1</sup>(x<sub>1</sub>))]) by a simpler linear functional Lf=sum from i=1 to m(a<sub>1</sub>f(x<sub>1</sub>)) In this paper, making use of natural Tchebysheff spline function, we give existence theorem and uniqueness theorem of L that is exact for the degree m to F; we also give three sufficient and necessary conditions in which L is the Sard best approximation to F.
文摘Nonlinear approximation is widely used in signal processing. Real-life signals can be modeled as functions of bounded variation. Thus the variable knot of approximating function could be self- adaptively chosen by balancing the total variation of the target function. In this paper, we adopt continuous piecewise linear approximation instead of the existing piecewise constants approximation. The results of experiments show that this new method is superior to the old one.
基金support from the National Natural Science Foundation of China (No. 5160 9224)the Major Program of National Natural Science Foundation of China (No. 51490675)the Fundamental Research Funds for the Central Universities (No. 201513056)
文摘Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we propose an approach for estimating nonlinear damping that involves a linear exponential analytical approximation of the experimental roll free-decay amplitudes, fol- lowed by parametric identification based on the asymptotic method. The restoring moment can be strongly nonlinear. To validate this method, we first analyzed numerically simulated roll free-decay data using rolling equations with two alternative parametric forms: linear-plus-quadratic and linear-plus-cubic damping. By doing so, we obtained accurate estimates of nonlinear damping coefficients, even for large initial roll amplitudes. Then, we applied the proposed method to real free-decay data obtained from a scale model of a bulk barrier, and found the simulated results to be in good agreement with the experimental data. Using only free-decay peak data, the proposed method can be used to estimate nonlinear roll-damping coefficients for conditions with a strongly nonlinear restoring moment and large initial roll amplitudes.
基金supported by the Russian Fund for Basic Research (RFBR grant 08-01-00115,RFBR/DFG grant 09-01-91332,RFBR grant 09-01-12058)Priority Research Programme of Department of Mathematical Sciences of Russian Academy of Sciences
文摘For an arbitrary tensor(multi-index array) with linear constraints at each direction,it is proved that the factors of any minimal canonical tensor approximation to this tensor satisfy the same linear constraints for the corresponding directions.
文摘A method of approaching to the infinite dimensional linear operators by the finite dimensional operators is discussed. It is shown that,for every infinite dimensional operator A and every natural number n, there exists an n dimensional optimal approximation to A. The norm error is found and the necessary and sufficient condition for such n dimensional optimal approximations to be unique is obtained.
文摘In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the whole real axis. The properties of approximation are studied and their asymptotic formulae are presented. These results show that their degrees of approximation are the best among existing operator sequences of Landau type, for example, their degrees of approximation for C 2[0, 1] are O(1/n 2) but corresponding degree of ordinary Landau operators are only O(1/n).
基金This work was supported by Junta de Andalucia. Grupo de investigacion Matematica Aplioada. Codao 1107
文摘In this work we slwly linear polynomial operators preserving some consecutive i-convexities and leaving in-verant the polynomtals up to a certain degree. First we study the existence of an incompatibility between the conservation of cenain i-cotivexities and the invariance of a space of polynomials. Interpolation properties are obtained and a theorem by Berens and DcVore about the Bernstein's operator ts extended. Finally, from these results a genera'ized Bernstein's operator is obtained.
文摘A method of linear momentum approximation is proposed that deals with weak nonlinear problems in an approximate manner. A motion of nonlinear nature is obtained in the system by assuming the motion to be in the form of linear momentum flow in the corresponding space introduced, followed by the transformation from the specified into a physical space. Significant results have been thereby derived in examining the effects of baroclinic Ekman momentum flow upon Eady-type baroclinic waves and frontogenesis. Also, this technique can be applied to investigate the dynamic characteristics of the weak nonlinear boundary layer including topography, stratification and non-Ekmantype friction for gaining further insight into the influence on the boundary layer inner parameters of terrain, baroclinicity and inhomogeneous process so that the classic theory is revised.
文摘Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependent random variables. Under the conditions of {αk, k ≥ 0} which entail that {Xt, t ≥ 1} is either a long memory process or a linear process, the strong approximation of {Xt, t ≥ 1} to a Gaussian process is studied. Finally, the results are applied to obtain the strong approximation of a long memory process to a fractional Brownian motion and the laws of the iterated logarithm for moving average processes.
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
基金supported by Russian Foundation for Basic Research(No.15-08-06859a)and by the Ministry of Education and Science of the Russian Federation in the framework of the basic part of the state order(No.2.8629.2017).
文摘This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system.According to AFL approach,we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately.The resulting AFL control is constructed in the form of asymptotic composition(composite control).Standard procedure for the composite control design consists of the following steps:1)system decomposition,2)solution of control problem for fast subsystem,3)solution of control problem for slow subsystem,4)construction of the resulting control in the form of the composition of slow and fast controls.The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system.To overcome this,we propose to change the sequence of the design procedure:1)solving the control problem for fast state variables part,2)system decomposition,3)solving the control problem for slow state variables part,4)construction of the resulting composite control.By this way,fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable.The application of the proposed approach is illustrated through several examples.
文摘By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.
基金This project was supported by the Natural Science Foundation of Shaanxi Province.
文摘High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms, the approximation formula under the least mean square error criterion is derived. For the iterative algorithms, a modified CORDIC (coordinate rotation digital computer) algorithm is developed. This modified CORDIC algorithm is proved to be with a maximum relative error about one half that of the original CORDIC algorithm. Finally, the effects of the finite register length on these algorithms are also concerned, which shows that 9 to 12-bit coefficients are sufficient for practical applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.
文摘There exist many iterative methods for computing the maximum likelihood estimator but most of them suffer from one or several drawbacks such as the need to inverse a Hessian matrix and the need to find good initial approximations of the parameters that are unknown in practice. In this paper, we present an estimation method without matrix inversion based on a linear approximation of the likelihood equations in a neighborhood of the constrained maximum likelihood estimator. We obtain closed-form approximations of solutions and standard errors. Then, we propose an iterative algorithm which cycles through the components of the vector parameter and updates one component at a time. The initial solution, which is necessary to start the iterative procedure, is automated. The proposed algorithm is compared to some of the best iterative optimization algorithms available on R and MATLAB software through a simulation study and applied to the statistical analysis of a road safety measure.
文摘In this present paper, firstly, the modified positive operators and their discrete operators are constructed. Then, we investigate the statistical approximation properties and rates of convergence by using modulus of continuity of these positive linear operators. Finally, we obtain the rate of statistical convergence of truncated operators.
文摘A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.