The yield map is generated by fitting the yield surface shape of yield monitor data mainly using paraboloid cones on floating neighborhoods. Each yield map value is determined by the fit of such a cone on an elliptica...The yield map is generated by fitting the yield surface shape of yield monitor data mainly using paraboloid cones on floating neighborhoods. Each yield map value is determined by the fit of such a cone on an elliptical neighborhood that is wider across the harvest tracks than it is along them. The coefficients of regression for modeling the paraboloid cones and the scale parameter are estimated using robust weighted M-estimators where the weights decrease quadratically from 1 in the middle to zero at the border of the selected neighborhood. The robust way of estimating the model parameters supersedes a procedure for detecting outliers. For a given neighborhood shape, this yield mapping method is implemented by the Fortran program paraboloidmapping.exe, which can be downloaded from the web. The size of the selected neighborhood is considered appropriate if the variance of the yield map values equals the variance of the true yields, which is the difference between the variance of the raw yield data and the error variance of the yield monitor. It is estimated using a robust variogram on data that have not had the trend removed.展开更多
Segregation analysis of the mixed genetic model of major gene plus polygene was used to identify the major genes for cotton yield-related traits using six generations P1, P2, F1, B1, B2, and F2 generated from the cros...Segregation analysis of the mixed genetic model of major gene plus polygene was used to identify the major genes for cotton yield-related traits using six generations P1, P2, F1, B1, B2, and F2 generated from the cross of Baimian 1 x TM-1. In addition to boll size and seed index, the major genes for the other five traits were detected: one each for seed yield, lint percentage, boll number, lint index; and two for lint yield. Quantitative trait locus/loci (QTL) mapping was performed in the F2 and F2:3 populations of above cross through molecular marker technology, and a total of 50 QTL (26 suggestive and 24 significant) for yield-related traits were detected. Four common QTL were discovered: qLP-3b(F2)/qLP-3(F2:3) and qLP-19b (F2)/qLP-19(F2:3) for lint percentage, qBN-17(F2)/qBN-17(F2:3) for boll number, and qBS-26b(F2)/qBS-26(F2:3) for boll size. Especially, qLP- 3b(Fz)/qLP-3(F2:3), not only had LOD scores 〉3 but also exceeded the permutation threshold (5.13 and 5.29, respectively), correspondingly explaining 23.47 and 29.55% of phenotypic variation. This QTL should be considered preferentially in marker assisted selection (MAS). Segregation analysis and QTL mapping could mutually complement and verify, which provides a theoretical basis for genetic improvement of cotton yield-related traits by using major genes (QTL).展开更多
Drought stress has long been a major constraint in maintaining yield stability of soybean (Glycine max (L.) Merr.) in rainfed ecosystems. The identification of consistent quantitative trait loci (QTL) involving ...Drought stress has long been a major constraint in maintaining yield stability of soybean (Glycine max (L.) Merr.) in rainfed ecosystems. The identification of consistent quantitative trait loci (QTL) involving seed yield per plant (YP) and drought susceptibility index (DSI) in a population across different environments would therefore be important in molecular marker-assisted breeding of soybean cultivars suitable for rainfed regions. The YP of a recombinant line population of 184 F2:7:11 lines from a cross of Kefengl and Nannong1138-2 was studied under water-stressed (WS) and well-watered (WW) conditions in field (F) and greenhouse (G) trials, and DSI for yield was calculated in two trials. Nineteen QTLs associated with YP-WS and YP-WW, and 10 QTLs associated with DSI, were identi- fied. Comparison of these QTL locations with previous findings showed that the majority of these regions control one or more traits re- lated to yield and other agronomic traits. One QTL on molecular linkage group (MLG) K for YP-F, and two QTLs on MLG C2 for YP-G, remained constant across different water regimes. The regions on MLG C2 for YP-WW-F and MLG H for YP-WS-F had a pleiotropic effect on DSI-F, and MLG A1 for YP-WS-G had a pleiotropic effect on DSI-G. The identification of consistent QTLs for YP and DSI across different environments will significantly improve the efficiency of selecting for drought tolerance in soybean.展开更多
Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n produ...Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n production.Identifying stable quantitative trait locus(QTLs)controlling fiber quality and yield related traits are necessary prerequisites for marker-assisted selection(MAS).Results:A genetic linkage map was constructed with 312 simple sequence repeat(SSR)loci and 35 linkage groups using JoinMap 4.0;the map spanned 1 929.9 cM,with an average interval between two markers of 6.19 cM,and covered approximately 43.37%of the cotton genome.A total of 74 QTLs controlling fiber quality and 41 QTLs controlling yield-related traits were identified in 4 segregating generations.These QTLs were distributed across 20 chromosomes and collectively explained 1.01%?27.80%of the observed phenotypic variations.In particular,35 stable QTLs could be identified in multiple generations,25 common QTLs were con sistent with those in previous studies,and 15 QTL clusters were found in 11 chromosome segments.Conclusion:These studies provide a theoretical basis for improving cotton yield and fiber quality for molecular marker-assisted selection.展开更多
High yield in rice mainly depends on large grain weight, ideal plant architecture and proper flowering time adapting to various geographic regions. To help achieve higher yield, phenotype variations of heading date(H...High yield in rice mainly depends on large grain weight, ideal plant architecture and proper flowering time adapting to various geographic regions. To help achieve higher yield, phenotype variations of heading date(HD), plant architecture and grain shape in a panel of 416 rice accessions were investigated in this study. A total of 143 markers including 100 simple sequence repeat(SSR) markers and 43 gene-tagged markers were employed in association mapping to detect quantitative trait loci(QTL) responsible for these variations. Among the 7 subpopulations, POP5 in japonica group showed the largest values of HD and grain width(GW), but the smallest values of grain length(GL) and grain length to width ratio(GLW). Among the six indica groups, POP7 had the largest values of HD, GL, GLW, and 1 000-grain weight(TGW). A total of 27 QTLs were detected underlying these phenotypic variations in single year, while 12 of them could be detected in 2006 and 2007. GS3 marker was closely associated with GL, GW and GLW, and widely distributed in different groups. The starch synthesis related gene markers, SSI, SSIIa, SBE1, AGPL4, and ISA1, were linked to plant height(PH), panicle length(PL), flag leaf length(FLL), GW, and GLW. The SSR markers, RM267, RM340 and RM346, were linked to at least two traits. Therefore, these new markers will probably be used to improve rice grain yield or plant architecture when performing marker-assisted selection of proper alleles.展开更多
Reliable estimation of region-wide rice yield is vital for food security and agricultural management.Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental...Reliable estimation of region-wide rice yield is vital for food security and agricultural management.Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions.However,they offer little infor-mation on spatial variability effects on farm-scale yield.Remote Sensing(RS)is a useful tool to upscale yield estimates from farm scales to regional levels.Much research used RS with rice models for reliable yield estimation.As several countries start to operatio-nalize rice monitoring systems,it is needed to synthesize current literature to identify knowledge gaps,to improve estimation accuracies,and to optimize processing.This paper critically reviewed significant developments in using geospatial methods,imagery,and quantitative models to estimate rice yield.First,essential characteristics of rice were discussed as detected by optical and radar sensors,band selection,sensor configuration,spatial resolution,mapping methods,and biophysical variables of rice derivable from RS data.Second,various empirical,process-based,and semi-empirical models that used RS data for spatial estimation of yield were critically assessed-discussing how major types of models,RS platforms,data assimilation algorithms,canopy state variables,and RS variables can be integrated for yield estimation.Lastly,to overcome current constraints and to improve accuracies,several possibilities were suggested-adding new modeling modules,using alternative canopy variables,and adopting novel modeling approaches.As rice yields are expected to decrease due to global warming,geospatial rice yield estimation techniques are indispensable tools for climate change assessments.Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars,by incorporating dynamic harvesting indices based on climatic drivers,using innovative modeling approaches with machine learning.展开更多
Masting is a well-marked variation in yields of oak forests. In Japan, this phenomenon is also related to wildlife management and oak regeneration practices. This study demonstrates the capability of integrating remot...Masting is a well-marked variation in yields of oak forests. In Japan, this phenomenon is also related to wildlife management and oak regeneration practices. This study demonstrates the capability of integrating remote sensing techniques into map- ping spatial variation of acorn production. The hyperspectral images in 72 wavelengths (407-898 nm) were acquired over the study area ten times over a period of three years (2003-2005) during the early growing season of Quercus serrata using the Airborne Im- aging Spectrometer Application (AISA) Eagle System. With the canopy spectral reflectance values of 22 sample trees extracted from the images, yield estimation models were developed via multiple linear regression (MLR) analyses. Using the object-oriented classi- fication approach in eCognition, canopies representative of individual oak trees (Q. serrata) were identified from the corresponding hyperspectral imagery and combined with the fitted estimation models developed, acorn yield over the entire forest were estimated and visualized into maps. Three estimation models, obtained for June 27 in 2003, July 13 in 2004 and June 21 in 2005, showed good performance in acorn yield estimation both for the training and validation datasets, all with R2 〉 0.4, p 〈 0.05 and RRMSE 〈 1 (the relative root mean square of error). The present study shows the potential of airborne hyperspectral imagery not only in estimating acorn yields during early growing seasons, but also in identifying Q. serrata from other image objects, based on which of the spatial distribution patterns of acorn production over large areas could be mapped. The yield map can provide within-stand abundance and valuable information for the size and spatial synchrony of acorn production.展开更多
Asiatic cotton (Gossypium arboreum L.) is an Old World cultivated cotton species. The sinense race was planted extensively in China. Due to the advances in spinning technology during the last century, the species wa...Asiatic cotton (Gossypium arboreum L.) is an Old World cultivated cotton species. The sinense race was planted extensively in China. Due to the advances in spinning technology during the last century, the species was replaced by the New World allotetraploid cotton G. hirsutum L. Gossypium arboreum is still grown in India and Pakistan and also used as an elite in current cotton breeding programs. In addition, G. arboreum serves as a model for genomic research in Gossypium. In the present study, we generated an A-genome diploid cotton intraspecific genetic map including 264 SSR loci with three morphological markers mapped to 13 linkage groups. The map spans 2,508.71 cM with an average distance of 9.4 cM between adjacent loci. A population containing 176 F2:3 families was used to perform quantitative trait loci (QTL) mapping for 17 phenotypes using Multiple QTL Model (MQM) of MapQTL ver 5.0. Overall, 108 QTLs were detected on 13 chromosomes. Thirty-one QTLs for yield and its components were detected in the F2 population. Forty-one QTLs for yield and its components were detected in the F2:3 families with a total of 43 QTLs for fiber qualities. Two QTLs for seed cotton weight/plant and lint index and three QTLs for seed index were consistently detected both in F2 and F2:3. Most QTLs for fiber qualities and yields were located at the same interval or neighboring intervals. These results indicated that the negative correlation between fiber qualities and yield traits may result from either pleiotropic effect of one gene or linkage effects of multiple closely linked genes.展开更多
An elite backcrossed inbred line Z550 with increased grains per panicle was identified from advanced backcrosses between Nipponbare and Xihui 18 by simple sequence repeat(SSR) marker-assisted selection(MAS). Z550 carr...An elite backcrossed inbred line Z550 with increased grains per panicle was identified from advanced backcrosses between Nipponbare and Xihui 18 by simple sequence repeat(SSR) marker-assisted selection(MAS). Z550 carries 13 substitution segments distributed on chromosomes 1, 6, 7, 8, 9, 10, and 12, with an average substitution length of 1.68 Mb. Compared with the Nipponbare parental line, plant height, panicle length, spikelets per panicle, grains per panicle, and grain weight for Z550 were significantly increased. While the grain width of Z550 was significantly narrower, and the seed setting ratio(81.43%) was significantly lower than that of Nipponbare, it is still sufficient for breeding purposes. Quantitative trait loci(QTLs) mapping for important agronomic traits was conducted with the F_2 population derived from Nipponbare crossed with Z550 using the restricted maximum likelihood(REML) method. A total of 16, including 12 previously unreported QTLs were detected, with contribution rates ranging from 1.46 to 10.49%. Grains per panicle was controlled by 8 QTLs, 5 of which increased number of grains whereas 3 decreased it. qGPP-1, with the largest contribution(10.49%), was estimated to increase grains per panicle by 30.67, while q GPP-9, with the minimum contribution rate(2.47%), had an effect of increasing grains per panicle by 15.79. These results will be useful for further development of single segment substitution lines with major QTLs, and for research of their molecular functions via QTL cloning.展开更多
The spikelet is a unique inflorescence structure in grasses. However, the molecular mechanism that regulates its development remains unclear, and we therefore characterize a spikelet mutant of rice(Oryza sativa L.), a...The spikelet is a unique inflorescence structure in grasses. However, the molecular mechanism that regulates its development remains unclear, and we therefore characterize a spikelet mutant of rice(Oryza sativa L.), aberrant-floral spikelet 1(afs1), which was derived from treatment of Xinong 1 B with ethyl methanesulfonate. In the afs1 mutant, the spikelet developed an additional lemma-like organ alongside the other normally developed floral organs, and the paleae were degenerated to differing degrees with or without normally developed inner floral organs. Genetic analysis revealed that the afs1 phenotype was controlled by a single recessive gene. The AFS1 gene was mapped between the insertion/deletion(In Del) marker Indel19 and the simple sequence repeat marker RM16893, with a physical distance of 128.5 kb on chromosome 4. Using sequence analysis, we identified the deletion of a 5-bp fragment and a transversion from G to A within LOC_Os04 g32510/LAX2, which caused early termination of translation in the afs1 mutant. These findings suggest that AFS1 may be a new allele of LAX2, and is involved in the development of floral organs by regulating the expression of genes related to their development. The above results provide a new view on the function of LAX2, which may also regulate the development of spikelets.展开更多
Agronomic traits are important determinants to rice yield, which are controlled by complex genetic factors as well as genotype by environment (G × E) interaction effects. The G × E effects for agronomic tr...Agronomic traits are important determinants to rice yield, which are controlled by complex genetic factors as well as genotype by environment (G × E) interaction effects. The G × E effects for agronomic traits of rice have been dissected with various approaches, but not with the current available approach, the association studies. In this study, a total of 32 655 single nucleotide polymorphisms were used to carry out associations with 14 agronomic traits among 20 rice accessions in two environments. The G × E interaction effects for all the agronomic traits were at highly significant levels (P〈0.01), accounting for 3.4%-22.3% of the total sum of squares except for the length of brown rice. Twenty three putative quantitative trait loci (QTLs), including five previously known and several new promising associations, were identified for 10 of 14 traits. Analysis of the relationships between the traits for which QTLs and the genotype effects could be identified suggested that the higher the genotypic effect, the higher the possibility to identify QTLs for the given trait. The new QTLs detected in this study will facilitate dissection of the complex agronomic traits and may give insight into the G × E effects with association mapping.展开更多
A chromosome segment substitution line (CSSL) is a powerful tool for combining quantitative trait locus (QTL) mapping with the pyramiding of desirable alleles. The rice CSSL Z1364 with increased kernel number was iden...A chromosome segment substitution line (CSSL) is a powerful tool for combining quantitative trait locus (QTL) mapping with the pyramiding of desirable alleles. The rice CSSL Z1364 with increased kernel number was identified in a BC3F8 population derived from a cross of Nipponbare as the recipient with Xihui 18 as the donor parent. Z1364 carried three substitution segments distributed on chromosomes 1, 6, and 8. The mean substitution length was 1.19 Mb. Of 17 QTL identified on the substitution segments, qSP1 for spikelets per panicle, qSSD1 for seed-set density, and qNSB1 for number of secondary branches explained respectively 57.34%, 87.7%, and 49.44% of the corresponding phenotypic variance and were all linked to RM6777. Chi-square analysis showed that the increased kernel number in Z1364 was inherited recessively by a single gene. By fine mapping, qSP1 was delimited to a 50-kb region on the short arm of chromosome 1. Based on DNA sequence, a previously uncharacterized rice homolog of Arabidopsis thaliana AT4G32551 was identified as a candidate gene for qSP1 in which mutation increases the number of spikelets and kernels in Z1364. qSP1 was expressed in all tissues, but particularly in 1-cm panicles. The expression levels of OsMADS22, GN1A, and DST were upregulated and those of LAX2, GNP1, and GHD7 were downregulated in Nipponbare. These results provide a foundation for functional research on qSP1.展开更多
Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to h...Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to heading, and grain yield and its component traits. Association analysis and quantitative trait locus mapping using phenotypic data from 15 environments led to the following conclusions. First, both Rht8 and Ppd-D1 a reduce plant height. However, Ppd-D1 a but not Rht8 causes earlier heading.Second, both Rht8 and Ppd-D1 a promote grain yield and affect component traits. Their combined effects are substantially larger than those conferred by either allele alone.Third, promotion of grain yield by Rht8 and Ppd-D1 a is through increasing fertile spikelet number. We speculate that Rht8 and Ppd-D1 a act independently and additively in control of plant height, grain yield and yield component. Combination of the two alleles is desirable for adjusting plant height and enhancing grain yield and abiotic stress tolerance.展开更多
文摘The yield map is generated by fitting the yield surface shape of yield monitor data mainly using paraboloid cones on floating neighborhoods. Each yield map value is determined by the fit of such a cone on an elliptical neighborhood that is wider across the harvest tracks than it is along them. The coefficients of regression for modeling the paraboloid cones and the scale parameter are estimated using robust weighted M-estimators where the weights decrease quadratically from 1 in the middle to zero at the border of the selected neighborhood. The robust way of estimating the model parameters supersedes a procedure for detecting outliers. For a given neighborhood shape, this yield mapping method is implemented by the Fortran program paraboloidmapping.exe, which can be downloaded from the web. The size of the selected neighborhood is considered appropriate if the variance of the yield map values equals the variance of the true yields, which is the difference between the variance of the raw yield data and the error variance of the yield monitor. It is estimated using a robust variogram on data that have not had the trend removed.
基金supported by the National Natural Science Foundation of China(31371677)the High-Tech R&D Program of China(2012AA101108)+2 种基金the Achievements Transformation Project of National Agricultural Science and Technology,China(2010276)the Research and Establishment of Modern Industrial Technology System for National Cotton,China(nycytx-06-09)the Natural Science Foundation of Henan Province,China(2010A210006)
文摘Segregation analysis of the mixed genetic model of major gene plus polygene was used to identify the major genes for cotton yield-related traits using six generations P1, P2, F1, B1, B2, and F2 generated from the cross of Baimian 1 x TM-1. In addition to boll size and seed index, the major genes for the other five traits were detected: one each for seed yield, lint percentage, boll number, lint index; and two for lint yield. Quantitative trait locus/loci (QTL) mapping was performed in the F2 and F2:3 populations of above cross through molecular marker technology, and a total of 50 QTL (26 suggestive and 24 significant) for yield-related traits were detected. Four common QTL were discovered: qLP-3b(F2)/qLP-3(F2:3) and qLP-19b (F2)/qLP-19(F2:3) for lint percentage, qBN-17(F2)/qBN-17(F2:3) for boll number, and qBS-26b(F2)/qBS-26(F2:3) for boll size. Especially, qLP- 3b(Fz)/qLP-3(F2:3), not only had LOD scores 〉3 but also exceeded the permutation threshold (5.13 and 5.29, respectively), correspondingly explaining 23.47 and 29.55% of phenotypic variation. This QTL should be considered preferentially in marker assisted selection (MAS). Segregation analysis and QTL mapping could mutually complement and verify, which provides a theoretical basis for genetic improvement of cotton yield-related traits by using major genes (QTL).
基金supported in part by the National High-Tech Program (No.2006AA10Z1C1)National Basic Research Program (No.2004CB117206 and 2009CB118400)+2 种基金the National Natural Science Foundation of China (No.30471094)the Key Project of Science and Technology of Shanxi Province (No.051017)the Scientific Research Foundation for Youth Academic Leaders from University in Shanxi Province (No.200425)
文摘Drought stress has long been a major constraint in maintaining yield stability of soybean (Glycine max (L.) Merr.) in rainfed ecosystems. The identification of consistent quantitative trait loci (QTL) involving seed yield per plant (YP) and drought susceptibility index (DSI) in a population across different environments would therefore be important in molecular marker-assisted breeding of soybean cultivars suitable for rainfed regions. The YP of a recombinant line population of 184 F2:7:11 lines from a cross of Kefengl and Nannong1138-2 was studied under water-stressed (WS) and well-watered (WW) conditions in field (F) and greenhouse (G) trials, and DSI for yield was calculated in two trials. Nineteen QTLs associated with YP-WS and YP-WW, and 10 QTLs associated with DSI, were identi- fied. Comparison of these QTL locations with previous findings showed that the majority of these regions control one or more traits re- lated to yield and other agronomic traits. One QTL on molecular linkage group (MLG) K for YP-F, and two QTLs on MLG C2 for YP-G, remained constant across different water regimes. The regions on MLG C2 for YP-WW-F and MLG H for YP-WS-F had a pleiotropic effect on DSI-F, and MLG A1 for YP-WS-G had a pleiotropic effect on DSI-G. The identification of consistent QTLs for YP and DSI across different environments will significantly improve the efficiency of selecting for drought tolerance in soybean.
基金supported by the National Natural Science Foundation of China(31371668)the National Agricultural Science and Technology Innovation project for CAAS(CAAS-ASTIP-2016-ICR)
文摘Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n production.Identifying stable quantitative trait locus(QTLs)controlling fiber quality and yield related traits are necessary prerequisites for marker-assisted selection(MAS).Results:A genetic linkage map was constructed with 312 simple sequence repeat(SSR)loci and 35 linkage groups using JoinMap 4.0;the map spanned 1 929.9 cM,with an average interval between two markers of 6.19 cM,and covered approximately 43.37%of the cotton genome.A total of 74 QTLs controlling fiber quality and 41 QTLs controlling yield-related traits were identified in 4 segregating generations.These QTLs were distributed across 20 chromosomes and collectively explained 1.01%?27.80%of the observed phenotypic variations.In particular,35 stable QTLs could be identified in multiple generations,25 common QTLs were con sistent with those in previous studies,and 15 QTL clusters were found in 11 chromosome segments.Conclusion:These studies provide a theoretical basis for improving cotton yield and fiber quality for molecular marker-assisted selection.
基金financially supported by the Fundamental Research Funds for the Central Universities at Zhejiang University, China (2016XZZX001-09)
文摘High yield in rice mainly depends on large grain weight, ideal plant architecture and proper flowering time adapting to various geographic regions. To help achieve higher yield, phenotype variations of heading date(HD), plant architecture and grain shape in a panel of 416 rice accessions were investigated in this study. A total of 143 markers including 100 simple sequence repeat(SSR) markers and 43 gene-tagged markers were employed in association mapping to detect quantitative trait loci(QTL) responsible for these variations. Among the 7 subpopulations, POP5 in japonica group showed the largest values of HD and grain width(GW), but the smallest values of grain length(GL) and grain length to width ratio(GLW). Among the six indica groups, POP7 had the largest values of HD, GL, GLW, and 1 000-grain weight(TGW). A total of 27 QTLs were detected underlying these phenotypic variations in single year, while 12 of them could be detected in 2006 and 2007. GS3 marker was closely associated with GL, GW and GLW, and widely distributed in different groups. The starch synthesis related gene markers, SSI, SSIIa, SBE1, AGPL4, and ISA1, were linked to plant height(PH), panicle length(PL), flag leaf length(FLL), GW, and GLW. The SSR markers, RM267, RM340 and RM346, were linked to at least two traits. Therefore, these new markers will probably be used to improve rice grain yield or plant architecture when performing marker-assisted selection of proper alleles.
基金This work is supported by New Zealand Ministry of Foreign Affairs and Trade PhD Scholarship and the University of Auckland’s Postgraduate Research Student SupportMinistry of Foreign Affairs and Trade,New Zealand,University of Auckland.
文摘Reliable estimation of region-wide rice yield is vital for food security and agricultural management.Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions.However,they offer little infor-mation on spatial variability effects on farm-scale yield.Remote Sensing(RS)is a useful tool to upscale yield estimates from farm scales to regional levels.Much research used RS with rice models for reliable yield estimation.As several countries start to operatio-nalize rice monitoring systems,it is needed to synthesize current literature to identify knowledge gaps,to improve estimation accuracies,and to optimize processing.This paper critically reviewed significant developments in using geospatial methods,imagery,and quantitative models to estimate rice yield.First,essential characteristics of rice were discussed as detected by optical and radar sensors,band selection,sensor configuration,spatial resolution,mapping methods,and biophysical variables of rice derivable from RS data.Second,various empirical,process-based,and semi-empirical models that used RS data for spatial estimation of yield were critically assessed-discussing how major types of models,RS platforms,data assimilation algorithms,canopy state variables,and RS variables can be integrated for yield estimation.Lastly,to overcome current constraints and to improve accuracies,several possibilities were suggested-adding new modeling modules,using alternative canopy variables,and adopting novel modeling approaches.As rice yields are expected to decrease due to global warming,geospatial rice yield estimation techniques are indispensable tools for climate change assessments.Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars,by incorporating dynamic harvesting indices based on climatic drivers,using innovative modeling approaches with machine learning.
基金supported by the Japan Society for the Promotion of Science (JSPS) through its grant-in-aid for scientific research projects (No. 14360148)
文摘Masting is a well-marked variation in yields of oak forests. In Japan, this phenomenon is also related to wildlife management and oak regeneration practices. This study demonstrates the capability of integrating remote sensing techniques into map- ping spatial variation of acorn production. The hyperspectral images in 72 wavelengths (407-898 nm) were acquired over the study area ten times over a period of three years (2003-2005) during the early growing season of Quercus serrata using the Airborne Im- aging Spectrometer Application (AISA) Eagle System. With the canopy spectral reflectance values of 22 sample trees extracted from the images, yield estimation models were developed via multiple linear regression (MLR) analyses. Using the object-oriented classi- fication approach in eCognition, canopies representative of individual oak trees (Q. serrata) were identified from the corresponding hyperspectral imagery and combined with the fitted estimation models developed, acorn yield over the entire forest were estimated and visualized into maps. Three estimation models, obtained for June 27 in 2003, July 13 in 2004 and June 21 in 2005, showed good performance in acorn yield estimation both for the training and validation datasets, all with R2 〉 0.4, p 〈 0.05 and RRMSE 〈 1 (the relative root mean square of error). The present study shows the potential of airborne hyperspectral imagery not only in estimating acorn yields during early growing seasons, but also in identifying Q. serrata from other image objects, based on which of the spatial distribution patterns of acorn production over large areas could be mapped. The yield map can provide within-stand abundance and valuable information for the size and spatial synchrony of acorn production.
基金supported by the Project of the Changjiang Scholars and Innovative Research Team in University, the Ministry of Education of China (No.IRT0432)the 111 Project (No.B08025)
文摘Asiatic cotton (Gossypium arboreum L.) is an Old World cultivated cotton species. The sinense race was planted extensively in China. Due to the advances in spinning technology during the last century, the species was replaced by the New World allotetraploid cotton G. hirsutum L. Gossypium arboreum is still grown in India and Pakistan and also used as an elite in current cotton breeding programs. In addition, G. arboreum serves as a model for genomic research in Gossypium. In the present study, we generated an A-genome diploid cotton intraspecific genetic map including 264 SSR loci with three morphological markers mapped to 13 linkage groups. The map spans 2,508.71 cM with an average distance of 9.4 cM between adjacent loci. A population containing 176 F2:3 families was used to perform quantitative trait loci (QTL) mapping for 17 phenotypes using Multiple QTL Model (MQM) of MapQTL ver 5.0. Overall, 108 QTLs were detected on 13 chromosomes. Thirty-one QTLs for yield and its components were detected in the F2 population. Forty-one QTLs for yield and its components were detected in the F2:3 families with a total of 43 QTLs for fiber qualities. Two QTLs for seed cotton weight/plant and lint index and three QTLs for seed index were consistently detected both in F2 and F2:3. Most QTLs for fiber qualities and yields were located at the same interval or neighboring intervals. These results indicated that the negative correlation between fiber qualities and yield traits may result from either pleiotropic effect of one gene or linkage effects of multiple closely linked genes.
基金supported by the National Key R&D Program of China (2017YFD0100202)the Chongqing Science and Technology Commission Special Project, China (cstc2016shms-ztzx0017)the Southwestern University Basic Operating Expenses Special Innovation Team Project, China (XDJK2017A004)
文摘An elite backcrossed inbred line Z550 with increased grains per panicle was identified from advanced backcrosses between Nipponbare and Xihui 18 by simple sequence repeat(SSR) marker-assisted selection(MAS). Z550 carries 13 substitution segments distributed on chromosomes 1, 6, 7, 8, 9, 10, and 12, with an average substitution length of 1.68 Mb. Compared with the Nipponbare parental line, plant height, panicle length, spikelets per panicle, grains per panicle, and grain weight for Z550 were significantly increased. While the grain width of Z550 was significantly narrower, and the seed setting ratio(81.43%) was significantly lower than that of Nipponbare, it is still sufficient for breeding purposes. Quantitative trait loci(QTLs) mapping for important agronomic traits was conducted with the F_2 population derived from Nipponbare crossed with Z550 using the restricted maximum likelihood(REML) method. A total of 16, including 12 previously unreported QTLs were detected, with contribution rates ranging from 1.46 to 10.49%. Grains per panicle was controlled by 8 QTLs, 5 of which increased number of grains whereas 3 decreased it. qGPP-1, with the largest contribution(10.49%), was estimated to increase grains per panicle by 30.67, while q GPP-9, with the minimum contribution rate(2.47%), had an effect of increasing grains per panicle by 15.79. These results will be useful for further development of single segment substitution lines with major QTLs, and for research of their molecular functions via QTL cloning.
基金supported by the National Natural Science Foundation of China(31900612 and 31730063)the Fundamental Research Funds for the Central Universities,China(SWU5330500322)+1 种基金the National Key Research and Development Program of China(2017YFD0100202)the Natural Science Foundation of Chongqing,China(CSTC2017jcyj BX0062)。
文摘The spikelet is a unique inflorescence structure in grasses. However, the molecular mechanism that regulates its development remains unclear, and we therefore characterize a spikelet mutant of rice(Oryza sativa L.), aberrant-floral spikelet 1(afs1), which was derived from treatment of Xinong 1 B with ethyl methanesulfonate. In the afs1 mutant, the spikelet developed an additional lemma-like organ alongside the other normally developed floral organs, and the paleae were degenerated to differing degrees with or without normally developed inner floral organs. Genetic analysis revealed that the afs1 phenotype was controlled by a single recessive gene. The AFS1 gene was mapped between the insertion/deletion(In Del) marker Indel19 and the simple sequence repeat marker RM16893, with a physical distance of 128.5 kb on chromosome 4. Using sequence analysis, we identified the deletion of a 5-bp fragment and a transversion from G to A within LOC_Os04 g32510/LAX2, which caused early termination of translation in the afs1 mutant. These findings suggest that AFS1 may be a new allele of LAX2, and is involved in the development of floral organs by regulating the expression of genes related to their development. The above results provide a new view on the function of LAX2, which may also regulate the development of spikelets.
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest from the Ministry of Agriculture, China (Grant No. 201103007)
文摘Agronomic traits are important determinants to rice yield, which are controlled by complex genetic factors as well as genotype by environment (G × E) interaction effects. The G × E effects for agronomic traits of rice have been dissected with various approaches, but not with the current available approach, the association studies. In this study, a total of 32 655 single nucleotide polymorphisms were used to carry out associations with 14 agronomic traits among 20 rice accessions in two environments. The G × E interaction effects for all the agronomic traits were at highly significant levels (P〈0.01), accounting for 3.4%-22.3% of the total sum of squares except for the length of brown rice. Twenty three putative quantitative trait loci (QTLs), including five previously known and several new promising associations, were identified for 10 of 14 traits. Analysis of the relationships between the traits for which QTLs and the genotype effects could be identified suggested that the higher the genotypic effect, the higher the possibility to identify QTLs for the given trait. The new QTLs detected in this study will facilitate dissection of the complex agronomic traits and may give insight into the G × E effects with association mapping.
基金supported by the National Key Research Plan Project (2017YFD0101107)the Chongqing Science and Technology Commission Special Project (cstc2016shmsztzx0032)the Southwest University Innovation Team Project (XDJK2017A004)
文摘A chromosome segment substitution line (CSSL) is a powerful tool for combining quantitative trait locus (QTL) mapping with the pyramiding of desirable alleles. The rice CSSL Z1364 with increased kernel number was identified in a BC3F8 population derived from a cross of Nipponbare as the recipient with Xihui 18 as the donor parent. Z1364 carried three substitution segments distributed on chromosomes 1, 6, and 8. The mean substitution length was 1.19 Mb. Of 17 QTL identified on the substitution segments, qSP1 for spikelets per panicle, qSSD1 for seed-set density, and qNSB1 for number of secondary branches explained respectively 57.34%, 87.7%, and 49.44% of the corresponding phenotypic variance and were all linked to RM6777. Chi-square analysis showed that the increased kernel number in Z1364 was inherited recessively by a single gene. By fine mapping, qSP1 was delimited to a 50-kb region on the short arm of chromosome 1. Based on DNA sequence, a previously uncharacterized rice homolog of Arabidopsis thaliana AT4G32551 was identified as a candidate gene for qSP1 in which mutation increases the number of spikelets and kernels in Z1364. qSP1 was expressed in all tissues, but particularly in 1-cm panicles. The expression levels of OsMADS22, GN1A, and DST were upregulated and those of LAX2, GNP1, and GHD7 were downregulated in Nipponbare. These results provide a foundation for functional research on qSP1.
基金supported by the Ministry of Science and Technology of China (2017YFD0101000)Science and Technology Service Network Program (STS Program) of Chinese Academy of Sciences (KFJ-STS-ZDTP-024)National Natural Science Foundation of China (31371611)
文摘Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to heading, and grain yield and its component traits. Association analysis and quantitative trait locus mapping using phenotypic data from 15 environments led to the following conclusions. First, both Rht8 and Ppd-D1 a reduce plant height. However, Ppd-D1 a but not Rht8 causes earlier heading.Second, both Rht8 and Ppd-D1 a promote grain yield and affect component traits. Their combined effects are substantially larger than those conferred by either allele alone.Third, promotion of grain yield by Rht8 and Ppd-D1 a is through increasing fertile spikelet number. We speculate that Rht8 and Ppd-D1 a act independently and additively in control of plant height, grain yield and yield component. Combination of the two alleles is desirable for adjusting plant height and enhancing grain yield and abiotic stress tolerance.