North China Plain(NCP) is the primary winter wheat production region in China, characterized by smallholder farming systems. Whereas the winter wheat average yield of smallholder farmers is currently low, the yield po...North China Plain(NCP) is the primary winter wheat production region in China, characterized by smallholder farming systems. Whereas the winter wheat average yield of smallholder farmers is currently low, the yield potential and limiting factors driving the current yield gap remain unclear. Therefore, increasing the wheat yield in NCP is essential for the national food security. This study monitored wheat yield, management practices and soil nutrient data in 132 farmers’ fields of Xushui County, Baoding City, Hebei Province during 2014–2016. These data were analyzed using variance and path analysis to determine the yield gap and the contribution of yield components(i.e., spikes per hectare, grain number per spike and 1 000-grain weight) to wheat yield. Then, the limiting factors of yield components and the optimizing strategies were identified by a boundary line approach. The results showed that the attainable potential yield for winter wheat was 10 514 kg ha^–1. The yield gaps varied strongly between three yield groups(i.e., high, middle and low), which were divided by yield level and contained 44 farmers in each group, and amounted to 2 493, 1 636 and 814 kg ha^–1, respectively. For the three yield components, only spikes per hectare was significantly different(P<0.01) among the three yield groups. For all 132 farmers’ fields, correlation between yield and spikes per hectare(r=0.51, P<0.01), was significantly positive, while correlations with grain number per spike(r=–0.16) and 1 000-grain weight(r=–0.10) were not significant. The path analysis also showed that the spikes per hectare of winter wheat were the most important component to the wheat yield. Boundary line analysis showed that seeding date was the most limiting factor of spikes per hectare with the highest contribution rate(26.7%), followed by basal N input(22.1%) and seeding rate(14.5%), which indicated that management factors in the seeding step were the most important for affecting spikes per hectare. For desired spikes per hectare(>6.598×10^6 ha^–1),the seeding rate should range from 210–300 kg ha^–1, seeding date should range from 3th to 8th October, and basal N input should range from 90–180 kg ha^–1. Compared to these reasonable ranges of management measures, most of the farmers’ practices were not suitable, and both lower and higher levels of management existed. It is concluded that the strategies for optimizing yield components could be achieved by improving wheat seeding quality and optimizing farmers’ nutrient management practices in the NCP.展开更多
In order to investigate the effect of meteorological factors on the yield and quality of special rice during the filling stage, an experiment was conducted with 10 special rice varieties which were planted in three di...In order to investigate the effect of meteorological factors on the yield and quality of special rice during the filling stage, an experiment was conducted with 10 special rice varieties which were planted in three different regions during spring 2017. The results showed that the quality traits and yields from different regions of the same variety were different, which reached up to a significant level in most varieties. Among the quality traits, the grain chalkiness rate and chalkiness degree were the most sensitive to different climatic factors, and changes were found among them in different regions, while minor variation was found between brown rice rate and white rice rate. The parameters that were severely affected by temperature were gel consistency, gelatinization temperature, brown rice rate and yield during the filling stage. The critically affected factors by heat were brown rice rate, protein content, essential amino acid and amylose content while brown rice rate, chalkiness rate and gelatinization temperature were substantially affected by water factors. Grain yield and quality were closely related to meteorological factors on different stages after heading. Our results revealed that yield and quality of special rice were significantly influenced by meteorological factors during the grain filling stage.展开更多
In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has...In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has not been evaluated at the macro scale. Taking Sichuan Province and Chongqing City as an example, this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007. The results show that sediment yield is significantly correlated with population density and cultivated area, in which the former appears to be more closely related to sediment yield. Moreover, in the relation of sediment yield vs. population density, a critical value of population density exists, below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density. The phenomenon essentially reflects the influence of natural factors, such as topography, precipitation and soil property, and some human activities on sediment yield. The region with a higher population density than critical value is located in the east of the study area and is characterized by plains, hills and low mountains, whereas the opposite is located in the west and characterized by middle and high mountains. In the eastern region, more people live on the lands with a low slope where regional soil erosion is slight; therefore, sediment yield is negatively related with population density. In contrast, in the western region, the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion, and in turn, high-intensity agricultural practices in these areas may further strengthen local soil erosion. It is also found that population tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield. The natural factors have greater influence on sediment yield of western region than that of eastern region. Generally, the natural factors play a dominant role on sediment yield in the Upper Yangtze River.展开更多
The mechanism of action of ecological factors affecting crop growth and development was complicated. In order to study the relationships between ecological factors and the indexes of yield property equation and determ...The mechanism of action of ecological factors affecting crop growth and development was complicated. In order to study the relationships between ecological factors and the indexes of yield property equation and determine the main ecological factors affecting yield, using 3-yr field experimental results for different yielding spring maize (Zea mays L.) populations and the relative meteorological observation data in Huadian of Jilin Province in China, and analyzing on the base of the yield property equation (MLAI × D × MNAR × HI = EN × GN × GW), the main ecological factors were screened, and further mechanisms of action affecting yield were analyzed. Stepwise regression analysis showed that yield was affected mainly by effective accumulated temperature, daily mean minimum temperature, daily mean maximum temperature in July, the ratios of growth days, and the sunshine hour before and after silking. In yield property equation, four indexes of MLAI, growth days, ear number and grain number (total grain number) affected principally yield, the ecological factors affecting predominantly yield were effective accumulated temperature, daily mean temperature, daily mean minimum temperature, daily mean maximum temperature in July, the ratios of growth days, rainfall, accumulated temperature, and sunshine hours before and after silking. Combined with the two analytical methods, it could be deduced that the temperature and the allocated ratios before and after silking of ecological factors were the key factors to achieve high yield. Therefore, appropriate sowing data should be adjusted to achieve the suitable temperature indexes during the whole growth stage and the rational allocated ratios of ecological factors before and after silking.展开更多
There are numerous factors which can affect the lymph node(LN) yield in colon cancer specimens.The aim of this paper was to identify both modifiable and nonmodifiable factors that have been demonstrated toaffect colon...There are numerous factors which can affect the lymph node(LN) yield in colon cancer specimens.The aim of this paper was to identify both modifiable and nonmodifiable factors that have been demonstrated toaffect colonic resection specimen LN yield and to summarise the pertinent literature on these topics.A literature review of Pub Med was performed to identify the potential factors which may influence the LN yield in colon cancer resection specimens.The terms used for the search were:LN,lymphadenectomy,LN yield,LN harvest,LN number,colon cancer and colorectal cancer.Both nonmodifiable and modifiable factors were identified.The review identified fifteen non-surgical factors:(13 nonmodifiable,2 modifiable) which may influence LN yield.LN yield is frequently reduced in older,obese patients and those with male sex and increased in patients with right sided,large,and poorly differentiated tumours.Patient ethnicity and lower socioeconomic class may negatively influence LN yield.Pre-operative tumour tattooing appears to increase LN yield.There are many factors that potentially influence the LN yield,although the strength of the association between the two varies greatly.Perfecting oncological resection and pathological analysis remain the cornerstones to achieving good quality and quantity LN yields in patients with colon cancer.展开更多
Effects of environmental factors such as climate,topography,vegetation and soil in shelter forests in Three Gorges Reservoir Region on runoff and sediment yields were monitored to identify dominant environmental facto...Effects of environmental factors such as climate,topography,vegetation and soil in shelter forests in Three Gorges Reservoir Region on runoff and sediment yields were monitored to identify dominant environmental factors controlling runoff and sediment yields in 15 runoff plots in study area by soil sampling,laboratory analysis,stepwise regression analysis and path analysis,and to establish the main control environmental factors that affect runoff and sediment yields. The results showed that soil bulk density,herbaceous cover,slope,and canopy density were the significant factors controlling runoff,and the direct path coefficient of each factor was ranked as canopy closure(-0. 628) > litter thickness(-0. 547) > bulk density( 0. 509) > altitude( 0. 289). The indirect path coefficient was ranked as soil bulk density( 0. 354) >litter thickness(-0. 169) > altitude( 0. 126) > canopy closure(-0. 104). Therefore,canopy closure and litter thickness mainly had direct effects on runoff,while soil bulk density mainly had indirect effects through their contributions to other factors. Herbaceous cover,litter thickness,slope,canopy density,and altitude were the significant factors controlling sediment yields. The direct path coefficient of each factor was ranked as herbaceous cover(-0. 815) > litter thickness(-0. 777) > canopy closure(-0. 624) > slope( 0. 620). The indirect path coefficient was ranked as slope( 0. 272) > litter thickness(-0. 131) > canopy closure(-0. 097) > herbaceous cover(-0. 084). Therefore,herbaceous cover and litter thickness mainly had direct effects on sediment yields,while slope mainly had indirect effects through their contributions to other factors. All the selected environmental factors jointly explained 85. 5% and 78. 3% of runoff and sediment yield variability,respectively. However,there were large values of remaining path coefficients of other factors influencing runoff and sediment yields,which indicated that some important factors are not included and should be taken into account.展开更多
Abiotic stresses like salinity and drought directly affect plant growth and water availability, resulting in lower yield in rice. So, a combination of stress tolerance along with enhanced grain yield is a major focus ...Abiotic stresses like salinity and drought directly affect plant growth and water availability, resulting in lower yield in rice. So, a combination of stress tolerance along with enhanced grain yield is a major focus of rice breeding. It was reported earlier that loss in function of the drought and salt tolerance (DST) gene results in increase in grain production through downregulating Gn1a/OsCKX2 expression. Moreover, dst mutants also showed enhanced drought and salt tolerance in rice by regulating genes involved in ROS homeostasis. In the present study, we proceeded to test these reports by downregulating DST using artificial microRNA technology in the commercial but salt sensitive, high-yielding, BRRIdhan 28 (BR28). This cultivar was transformed with DST_artificial microRNA (DST_amiRNA) driven by the constitutive CaMV35S promoter using tissue culture independent Agrobacterium mediated in planta transformation. DST_amiRNA transgenic plants were confirmed by artificial microRNA specific PCR. Transformed plants at T0 generation showed vigorous growth with significantly longer panicle length and higher primary branching resulting in higher yield, compared to the wild type (WT) BR28. Semi-quantitative RT PCR confirmed the decrease in DST expression in the BR28 transgenic plants compared to WT. T1 transgenic plants also showed improvement in a number of physiological parameters and greater growth compared to WT after 14 days of 120 mM salt (NaCl) stress at seedling stage. Therefore, DST downregulated transgenic plants showed both higher stress tolerance as well as better yields. Furthermore, stable inheritance of the improved phenotype of the DST_amiRNA transgenics will be tested in advanced generations.展开更多
The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a lo...The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.展开更多
The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(...The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(D-P) yield criteria, some reasonable yield criteria selections were discussed for quantitative analysis of unsaturated soil slope stability. Moreover, a critical point was found at the effective angle of friction equaling to 16.5° by transformation of parameters related to unsaturated soil under sustained rainfall. When the effective angle of friction more than 16.5° through parameter transformation of different yield criteria under natural condition, the calculation result of the safety factor was such that: f(DP1) > f(M-C) > f(equivalent M-C) > f(DP2) > f(DP3). While the effective angle of friction less than 16.5°, through parameter transformation, the safety factors were in the following order: f(DP1) > f(M-C) > f(DP2) > f(equivalent M-C) > f(DP3). The calculated results from a case study showed that the equivalent M-C yield criterion should be the best at evaluating soil slope stability before rainfall; the DP2 yield criterion should be selected to calculate the soil slope stability at the effective angle of friction less than 16.5° under sustained rainfall. The yield criterion should be selected or adjusted reasonably to calculate the safety factor of unsaturated soil slopes before and during sustained rainfall.展开更多
Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation...Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation in order to meet the increasing local consumption. The big challenge is to incerese wheat production using same or less amount of irrigation water. In this trend, the study was carried out to analyze the sensitivity of wheat yield to water deficit using remotely sensed data in El-Salhia agricultural project which located in the eastern part of Nile delta. Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) were extracted from Landsat 7. Water Deficit Index (WDI) used both LST minus air temperature (Tair) and vegetation index to estimate the relative water status. Yield response factor (ky) was derived from relationship between relative yield decrease and relative evapotranspiration deficit. The relative Evapotranspiration deficit was replaced by WDI. Linear regression was found between predicted wheat yield and actual wheat yield with 0.2?6, 0.025, 0.252 and 0.76 as correlation coefficient on 30th of Dec. 2012, 15th of Jan. 2013, 16th of Feb. 2013 and 20th of Mar. 2013 respectively. The main objective of this study is using a combination between FAO 33 paper approach and remote sensing techniques to estimate wheat yield response to water.展开更多
[Objective] The research aimed to study influence of meteorological factor in late growth stage of wheat. [Method] Based on precipitation, sunshine and yield per unit of wheat in Anyang City in May of 1979-2008, the p...[Objective] The research aimed to study influence of meteorological factor in late growth stage of wheat. [Method] Based on precipitation, sunshine and yield per unit of wheat in Anyang City in May of 1979-2008, the positive and negative influences of meteorological condition in late growth stage of wheat (May) on wheat yield in Anyang City were analyzed by using agricultural climatic statistical method. Moreover, the reason and defense measure of green-dry hazard in late growth stage of wheat in the city were studied. [Result] When the sunshine percentage in May > 55%, and rainfall < 45 mm, the wheat yield generally increased. But when it was overcast and rainy, and the sunshine was less, especially monthly rainfall > 80 mm, and monthly sunshine percentage < 55%, the wheat yield generally reduced. The overcast and rainy weather, flood in late growth stage of wheat were easy to cause green-dry yield reduction. The rainless weather even drought weren’t obviously unfavorable for good harvest of wheat. In May, when precipitation was too more, or duration was too long, and the air humidity was too big, the normal water supply and inorganic nutrient transmission were affected. Meanwhile, when the overcast and rainy weather was longer, the sunshine was shorter, and the sunshine intensity weakened in late stage, it wasn’t favorable for accumulation of photosynthetic product, and the normal implementing of grouting process was affected. The measures should be used to prevent and control green-dry yield reduction of wheat, such as discharging water and preventing flood, breeding good seed, scientific planting and reasonable irrigation. [Conclusion] The research provided scientific basis for studying variety improvement, scientific plantation, reasonable irrigation, good quality and high yield of wheat.展开更多
Based on grain yield data of China, the vanation features of grain yield in China in recent 40 years and their relationships with the associated factors were analyzed. Results show that the total grain yield increased...Based on grain yield data of China, the vanation features of grain yield in China in recent 40 years and their relationships with the associated factors were analyzed. Results show that the total grain yield increased gradually, and its interannual variation is influenced principally by unit area crop yield (about 70 percent in average). The influences of agricultural technology, social factors and weather conditions on thet area crop yield can be separated because of their unique variation trends and time scales. The influence of agricultural technology is in a smoothly and gradually incremental trend, and the influence of the social factors is oscillated with three waves in recent 40 years, and the influence of weather conditions is fiuctuated sharply from year to year. Their mean effects on the inter-annual variation of unit area crop yield are about 35 to 40 percent, 10 to 15 percent and 50 percent respectively. In the view point of predictions, the effects of weather conditions are much more important.展开更多
Data from 4 counties of Hainan Province of China from 1991-2012 was used to determine the weather impact on rice yields in both early and late rice seasons with multiple regression models. The results show there is no...Data from 4 counties of Hainan Province of China from 1991-2012 was used to determine the weather impact on rice yields in both early and late rice seasons with multiple regression models. The results show there is normal weather environment for rice in the heading stage for early season rice in May and the milking stage for late season rice in November. For early season rice, more rain in April and June is better for rice to boot and milk, the average temperature has negative effect for the season rice yield;for late season rice, the average temperature have positive effect for the difference between rice yield and the mean of total years but in seedling and booting stage;the rice yield difference between double season is compared and analyzed through the difference of meteorological factors, the results show that the precipitation gap in tillering stage has positive effect to rice yield increasing, but against in booting stage. The relative results should be use to forecast rice yield, and further provide the rice production guiding.展开更多
The present study was planned to analyze the yield gap of wheat and its production constraints in order to explore the approaches for narrowing the yield gap of wheat in different wheat-rice rotation regions of Anhui ...The present study was planned to analyze the yield gap of wheat and its production constraints in order to explore the approaches for narrowing the yield gap of wheat in different wheat-rice rotation regions of Anhui Province. The production status and limiting factors of wheat in three rice-wheat rotation regions which are named Region Ⅰ,Region Ⅱ and Region Ⅲ were surveyed by using participatory rural appraisal method. The personnel,who were engaged in wheat production in rice-wheat rotation regions of Anhui Province,mainly ageing from 41 to 60,accounted for 79% of the total personnel in the regions. There were significant differences in yield of wheat which was planted after rice in Anhui. The yield was ranging from 8 907. 00 to 2 700. 00 kg/ha from north to south with an average of 4 978. 5 kg/ha,and the rank of overall average yields at province level was Region Ⅰ( 5 685. 60 kg/ha) > Region Ⅱ( 5 600. 10 kg/ha) > Region Ⅲ( 3 048. 60 kg/ha). The average yield gap of wheat in wheat-rice rotation regions at province level was up to 2 637. 00 kg/ha,and the extreme yield gaps per hectare in the same region were 2 778. 00 kg( Region Ⅰ),2 502. 00 kg( Region Ⅱ) and 1 575. 00 kg( Region Ⅲ) respectively. The objective constraints were Fusarium head blight and pre-harvest sprouting;the subjective constraints were variety selection and layout,poor sowing quality and low seedling quality;social constraints were high cost,low market price and poor efficiency;and ecological constraints were poor soil texture,soil infertility and poor water-and-fertilizer retention. The yield gap of wheat in rice-wheat rotation regions can be effectively reduced by improving yield potential of low-and-medium-yielding fields. Selecting appropriate wheat varieties and layout,constructing disease forecast system,improving agricultural machinery and social service organizations of plant protection,and strengthening scientific training as well as technological training of new agricultural operators and agricultural machinery technicians are the core means to narrowing the yield gap of wheat in rice-wheat rotation regions at province scale.展开更多
基金supported by the National Basic Research Program of China (2015CB150405)the Special Fund for Agro-scientific Research in the Public Interest, China (201103003)
文摘North China Plain(NCP) is the primary winter wheat production region in China, characterized by smallholder farming systems. Whereas the winter wheat average yield of smallholder farmers is currently low, the yield potential and limiting factors driving the current yield gap remain unclear. Therefore, increasing the wheat yield in NCP is essential for the national food security. This study monitored wheat yield, management practices and soil nutrient data in 132 farmers’ fields of Xushui County, Baoding City, Hebei Province during 2014–2016. These data were analyzed using variance and path analysis to determine the yield gap and the contribution of yield components(i.e., spikes per hectare, grain number per spike and 1 000-grain weight) to wheat yield. Then, the limiting factors of yield components and the optimizing strategies were identified by a boundary line approach. The results showed that the attainable potential yield for winter wheat was 10 514 kg ha^–1. The yield gaps varied strongly between three yield groups(i.e., high, middle and low), which were divided by yield level and contained 44 farmers in each group, and amounted to 2 493, 1 636 and 814 kg ha^–1, respectively. For the three yield components, only spikes per hectare was significantly different(P<0.01) among the three yield groups. For all 132 farmers’ fields, correlation between yield and spikes per hectare(r=0.51, P<0.01), was significantly positive, while correlations with grain number per spike(r=–0.16) and 1 000-grain weight(r=–0.10) were not significant. The path analysis also showed that the spikes per hectare of winter wheat were the most important component to the wheat yield. Boundary line analysis showed that seeding date was the most limiting factor of spikes per hectare with the highest contribution rate(26.7%), followed by basal N input(22.1%) and seeding rate(14.5%), which indicated that management factors in the seeding step were the most important for affecting spikes per hectare. For desired spikes per hectare(>6.598×10^6 ha^–1),the seeding rate should range from 210–300 kg ha^–1, seeding date should range from 3th to 8th October, and basal N input should range from 90–180 kg ha^–1. Compared to these reasonable ranges of management measures, most of the farmers’ practices were not suitable, and both lower and higher levels of management existed. It is concluded that the strategies for optimizing yield components could be achieved by improving wheat seeding quality and optimizing farmers’ nutrient management practices in the NCP.
文摘In order to investigate the effect of meteorological factors on the yield and quality of special rice during the filling stage, an experiment was conducted with 10 special rice varieties which were planted in three different regions during spring 2017. The results showed that the quality traits and yields from different regions of the same variety were different, which reached up to a significant level in most varieties. Among the quality traits, the grain chalkiness rate and chalkiness degree were the most sensitive to different climatic factors, and changes were found among them in different regions, while minor variation was found between brown rice rate and white rice rate. The parameters that were severely affected by temperature were gel consistency, gelatinization temperature, brown rice rate and yield during the filling stage. The critically affected factors by heat were brown rice rate, protein content, essential amino acid and amylose content while brown rice rate, chalkiness rate and gelatinization temperature were substantially affected by water factors. Grain yield and quality were closely related to meteorological factors on different stages after heading. Our results revealed that yield and quality of special rice were significantly influenced by meteorological factors during the grain filling stage.
基金Commonweal Special Project of the Minislry of Water Resources of China, No.2007SHZ0901034 National Natural Science Foundation of China, No.40971012 Acknowledgements We are grateful to Data Center for Resources and Environmental Sciences of Chinese Academy of Sciences for providing the data of soil and to China Meteorological Administration for providing the data of precipitation.
文摘In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has not been evaluated at the macro scale. Taking Sichuan Province and Chongqing City as an example, this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007. The results show that sediment yield is significantly correlated with population density and cultivated area, in which the former appears to be more closely related to sediment yield. Moreover, in the relation of sediment yield vs. population density, a critical value of population density exists, below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density. The phenomenon essentially reflects the influence of natural factors, such as topography, precipitation and soil property, and some human activities on sediment yield. The region with a higher population density than critical value is located in the east of the study area and is characterized by plains, hills and low mountains, whereas the opposite is located in the west and characterized by middle and high mountains. In the eastern region, more people live on the lands with a low slope where regional soil erosion is slight; therefore, sediment yield is negatively related with population density. In contrast, in the western region, the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion, and in turn, high-intensity agricultural practices in these areas may further strengthen local soil erosion. It is also found that population tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield. The natural factors have greater influence on sediment yield of western region than that of eastern region. Generally, the natural factors play a dominant role on sediment yield in the Upper Yangtze River.
基金supported by the National High-Tech Research and Development Program of China(2006AA10Z272)the National Basic Research Program of China (2006BAD02A13)
文摘The mechanism of action of ecological factors affecting crop growth and development was complicated. In order to study the relationships between ecological factors and the indexes of yield property equation and determine the main ecological factors affecting yield, using 3-yr field experimental results for different yielding spring maize (Zea mays L.) populations and the relative meteorological observation data in Huadian of Jilin Province in China, and analyzing on the base of the yield property equation (MLAI × D × MNAR × HI = EN × GN × GW), the main ecological factors were screened, and further mechanisms of action affecting yield were analyzed. Stepwise regression analysis showed that yield was affected mainly by effective accumulated temperature, daily mean minimum temperature, daily mean maximum temperature in July, the ratios of growth days, and the sunshine hour before and after silking. In yield property equation, four indexes of MLAI, growth days, ear number and grain number (total grain number) affected principally yield, the ecological factors affecting predominantly yield were effective accumulated temperature, daily mean temperature, daily mean minimum temperature, daily mean maximum temperature in July, the ratios of growth days, rainfall, accumulated temperature, and sunshine hours before and after silking. Combined with the two analytical methods, it could be deduced that the temperature and the allocated ratios before and after silking of ecological factors were the key factors to achieve high yield. Therefore, appropriate sowing data should be adjusted to achieve the suitable temperature indexes during the whole growth stage and the rational allocated ratios of ecological factors before and after silking.
文摘There are numerous factors which can affect the lymph node(LN) yield in colon cancer specimens.The aim of this paper was to identify both modifiable and nonmodifiable factors that have been demonstrated toaffect colonic resection specimen LN yield and to summarise the pertinent literature on these topics.A literature review of Pub Med was performed to identify the potential factors which may influence the LN yield in colon cancer resection specimens.The terms used for the search were:LN,lymphadenectomy,LN yield,LN harvest,LN number,colon cancer and colorectal cancer.Both nonmodifiable and modifiable factors were identified.The review identified fifteen non-surgical factors:(13 nonmodifiable,2 modifiable) which may influence LN yield.LN yield is frequently reduced in older,obese patients and those with male sex and increased in patients with right sided,large,and poorly differentiated tumours.Patient ethnicity and lower socioeconomic class may negatively influence LN yield.Pre-operative tumour tattooing appears to increase LN yield.There are many factors that potentially influence the LN yield,although the strength of the association between the two varies greatly.Perfecting oncological resection and pathological analysis remain the cornerstones to achieving good quality and quantity LN yields in patients with colon cancer.
基金Supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAD07B04)Key Science and Technology Program of Henan Province,China(152102110059)
文摘Effects of environmental factors such as climate,topography,vegetation and soil in shelter forests in Three Gorges Reservoir Region on runoff and sediment yields were monitored to identify dominant environmental factors controlling runoff and sediment yields in 15 runoff plots in study area by soil sampling,laboratory analysis,stepwise regression analysis and path analysis,and to establish the main control environmental factors that affect runoff and sediment yields. The results showed that soil bulk density,herbaceous cover,slope,and canopy density were the significant factors controlling runoff,and the direct path coefficient of each factor was ranked as canopy closure(-0. 628) > litter thickness(-0. 547) > bulk density( 0. 509) > altitude( 0. 289). The indirect path coefficient was ranked as soil bulk density( 0. 354) >litter thickness(-0. 169) > altitude( 0. 126) > canopy closure(-0. 104). Therefore,canopy closure and litter thickness mainly had direct effects on runoff,while soil bulk density mainly had indirect effects through their contributions to other factors. Herbaceous cover,litter thickness,slope,canopy density,and altitude were the significant factors controlling sediment yields. The direct path coefficient of each factor was ranked as herbaceous cover(-0. 815) > litter thickness(-0. 777) > canopy closure(-0. 624) > slope( 0. 620). The indirect path coefficient was ranked as slope( 0. 272) > litter thickness(-0. 131) > canopy closure(-0. 097) > herbaceous cover(-0. 084). Therefore,herbaceous cover and litter thickness mainly had direct effects on sediment yields,while slope mainly had indirect effects through their contributions to other factors. All the selected environmental factors jointly explained 85. 5% and 78. 3% of runoff and sediment yield variability,respectively. However,there were large values of remaining path coefficients of other factors influencing runoff and sediment yields,which indicated that some important factors are not included and should be taken into account.
文摘Abiotic stresses like salinity and drought directly affect plant growth and water availability, resulting in lower yield in rice. So, a combination of stress tolerance along with enhanced grain yield is a major focus of rice breeding. It was reported earlier that loss in function of the drought and salt tolerance (DST) gene results in increase in grain production through downregulating Gn1a/OsCKX2 expression. Moreover, dst mutants also showed enhanced drought and salt tolerance in rice by regulating genes involved in ROS homeostasis. In the present study, we proceeded to test these reports by downregulating DST using artificial microRNA technology in the commercial but salt sensitive, high-yielding, BRRIdhan 28 (BR28). This cultivar was transformed with DST_artificial microRNA (DST_amiRNA) driven by the constitutive CaMV35S promoter using tissue culture independent Agrobacterium mediated in planta transformation. DST_amiRNA transgenic plants were confirmed by artificial microRNA specific PCR. Transformed plants at T0 generation showed vigorous growth with significantly longer panicle length and higher primary branching resulting in higher yield, compared to the wild type (WT) BR28. Semi-quantitative RT PCR confirmed the decrease in DST expression in the BR28 transgenic plants compared to WT. T1 transgenic plants also showed improvement in a number of physiological parameters and greater growth compared to WT after 14 days of 120 mM salt (NaCl) stress at seedling stage. Therefore, DST downregulated transgenic plants showed both higher stress tolerance as well as better yields. Furthermore, stable inheritance of the improved phenotype of the DST_amiRNA transgenics will be tested in advanced generations.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40231006 the National Key Program for Developing Basic Sciences under Grant No. 2006CB400503the Knowledge Innovation Project of the Chinese Academy of Science under Grant No. KZCX- SW-218.
文摘The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.
基金sponsored by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY13E080008)the Natural Science Foundation of China(Grant No.51108293)the Science and Technology Fund of Yunnan Provincial Communication Department of China(Grant No.2010(A)06-b)
文摘The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(D-P) yield criteria, some reasonable yield criteria selections were discussed for quantitative analysis of unsaturated soil slope stability. Moreover, a critical point was found at the effective angle of friction equaling to 16.5° by transformation of parameters related to unsaturated soil under sustained rainfall. When the effective angle of friction more than 16.5° through parameter transformation of different yield criteria under natural condition, the calculation result of the safety factor was such that: f(DP1) > f(M-C) > f(equivalent M-C) > f(DP2) > f(DP3). While the effective angle of friction less than 16.5°, through parameter transformation, the safety factors were in the following order: f(DP1) > f(M-C) > f(DP2) > f(equivalent M-C) > f(DP3). The calculated results from a case study showed that the equivalent M-C yield criterion should be the best at evaluating soil slope stability before rainfall; the DP2 yield criterion should be selected to calculate the soil slope stability at the effective angle of friction less than 16.5° under sustained rainfall. The yield criterion should be selected or adjusted reasonably to calculate the safety factor of unsaturated soil slopes before and during sustained rainfall.
文摘Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation in order to meet the increasing local consumption. The big challenge is to incerese wheat production using same or less amount of irrigation water. In this trend, the study was carried out to analyze the sensitivity of wheat yield to water deficit using remotely sensed data in El-Salhia agricultural project which located in the eastern part of Nile delta. Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) were extracted from Landsat 7. Water Deficit Index (WDI) used both LST minus air temperature (Tair) and vegetation index to estimate the relative water status. Yield response factor (ky) was derived from relationship between relative yield decrease and relative evapotranspiration deficit. The relative Evapotranspiration deficit was replaced by WDI. Linear regression was found between predicted wheat yield and actual wheat yield with 0.2?6, 0.025, 0.252 and 0.76 as correlation coefficient on 30th of Dec. 2012, 15th of Jan. 2013, 16th of Feb. 2013 and 20th of Mar. 2013 respectively. The main objective of this study is using a combination between FAO 33 paper approach and remote sensing techniques to estimate wheat yield response to water.
文摘[Objective] The research aimed to study influence of meteorological factor in late growth stage of wheat. [Method] Based on precipitation, sunshine and yield per unit of wheat in Anyang City in May of 1979-2008, the positive and negative influences of meteorological condition in late growth stage of wheat (May) on wheat yield in Anyang City were analyzed by using agricultural climatic statistical method. Moreover, the reason and defense measure of green-dry hazard in late growth stage of wheat in the city were studied. [Result] When the sunshine percentage in May > 55%, and rainfall < 45 mm, the wheat yield generally increased. But when it was overcast and rainy, and the sunshine was less, especially monthly rainfall > 80 mm, and monthly sunshine percentage < 55%, the wheat yield generally reduced. The overcast and rainy weather, flood in late growth stage of wheat were easy to cause green-dry yield reduction. The rainless weather even drought weren’t obviously unfavorable for good harvest of wheat. In May, when precipitation was too more, or duration was too long, and the air humidity was too big, the normal water supply and inorganic nutrient transmission were affected. Meanwhile, when the overcast and rainy weather was longer, the sunshine was shorter, and the sunshine intensity weakened in late stage, it wasn’t favorable for accumulation of photosynthetic product, and the normal implementing of grouting process was affected. The measures should be used to prevent and control green-dry yield reduction of wheat, such as discharging water and preventing flood, breeding good seed, scientific planting and reasonable irrigation. [Conclusion] The research provided scientific basis for studying variety improvement, scientific plantation, reasonable irrigation, good quality and high yield of wheat.
文摘Based on grain yield data of China, the vanation features of grain yield in China in recent 40 years and their relationships with the associated factors were analyzed. Results show that the total grain yield increased gradually, and its interannual variation is influenced principally by unit area crop yield (about 70 percent in average). The influences of agricultural technology, social factors and weather conditions on thet area crop yield can be separated because of their unique variation trends and time scales. The influence of agricultural technology is in a smoothly and gradually incremental trend, and the influence of the social factors is oscillated with three waves in recent 40 years, and the influence of weather conditions is fiuctuated sharply from year to year. Their mean effects on the inter-annual variation of unit area crop yield are about 35 to 40 percent, 10 to 15 percent and 50 percent respectively. In the view point of predictions, the effects of weather conditions are much more important.
文摘Data from 4 counties of Hainan Province of China from 1991-2012 was used to determine the weather impact on rice yields in both early and late rice seasons with multiple regression models. The results show there is normal weather environment for rice in the heading stage for early season rice in May and the milking stage for late season rice in November. For early season rice, more rain in April and June is better for rice to boot and milk, the average temperature has negative effect for the season rice yield;for late season rice, the average temperature have positive effect for the difference between rice yield and the mean of total years but in seedling and booting stage;the rice yield difference between double season is compared and analyzed through the difference of meteorological factors, the results show that the precipitation gap in tillering stage has positive effect to rice yield increasing, but against in booting stage. The relative results should be use to forecast rice yield, and further provide the rice production guiding.
基金National Key Research and Development Program Fund of China(2016YFD0300107)Initiative Funds for Talented Scientists in Anhui Academy of Agricultural Sciences(16F0202).
文摘The present study was planned to analyze the yield gap of wheat and its production constraints in order to explore the approaches for narrowing the yield gap of wheat in different wheat-rice rotation regions of Anhui Province. The production status and limiting factors of wheat in three rice-wheat rotation regions which are named Region Ⅰ,Region Ⅱ and Region Ⅲ were surveyed by using participatory rural appraisal method. The personnel,who were engaged in wheat production in rice-wheat rotation regions of Anhui Province,mainly ageing from 41 to 60,accounted for 79% of the total personnel in the regions. There were significant differences in yield of wheat which was planted after rice in Anhui. The yield was ranging from 8 907. 00 to 2 700. 00 kg/ha from north to south with an average of 4 978. 5 kg/ha,and the rank of overall average yields at province level was Region Ⅰ( 5 685. 60 kg/ha) > Region Ⅱ( 5 600. 10 kg/ha) > Region Ⅲ( 3 048. 60 kg/ha). The average yield gap of wheat in wheat-rice rotation regions at province level was up to 2 637. 00 kg/ha,and the extreme yield gaps per hectare in the same region were 2 778. 00 kg( Region Ⅰ),2 502. 00 kg( Region Ⅱ) and 1 575. 00 kg( Region Ⅲ) respectively. The objective constraints were Fusarium head blight and pre-harvest sprouting;the subjective constraints were variety selection and layout,poor sowing quality and low seedling quality;social constraints were high cost,low market price and poor efficiency;and ecological constraints were poor soil texture,soil infertility and poor water-and-fertilizer retention. The yield gap of wheat in rice-wheat rotation regions can be effectively reduced by improving yield potential of low-and-medium-yielding fields. Selecting appropriate wheat varieties and layout,constructing disease forecast system,improving agricultural machinery and social service organizations of plant protection,and strengthening scientific training as well as technological training of new agricultural operators and agricultural machinery technicians are the core means to narrowing the yield gap of wheat in rice-wheat rotation regions at province scale.