Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta...Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.展开更多
Low Earth Orbit(LEO)satellites have gained significant attention for their low-latency communication and computing capabilities but face challenges due to high mobility and limited resources.Existing studies integrate...Low Earth Orbit(LEO)satellites have gained significant attention for their low-latency communication and computing capabilities but face challenges due to high mobility and limited resources.Existing studies integrate edge computing with LEO satellite networks to optimize task offloading;however,they often overlook the impact of frequent topology changes,unstable transmission links,and intermittent satellite visibility,leading to task execution failures and increased latency.To address these issues,this paper proposes a dynamic integrated spaceground computing framework that optimizes task offloading under LEO satellite mobility constraints.We design an adaptive task migration strategy through inter-satellite links when target satellites become inaccessible.To enhance data transmission reliability,we introduce a communication stability constraint based on transmission bit error rate(BER).Additionally,we develop a genetic algorithm(GA)-based task scheduling method that dynamically allocates computing resources while minimizing latency and energy consumption.Our approach jointly considers satellite computing capacity,link stability,and task execution reliability to achieve efficient task offloading.Experimental results demonstrate that the proposed method significantly improves task execution success rates,reduces system overhead,and enhances overall computational efficiency in LEO satellite networks.展开更多
Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,convention...Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.展开更多
Working memory is a core cognitive function that supports goal-directed behavior and complex thought.We developed a spatial working memory and attention test on paired symbols(SWAPS)which has been proved to be a usefu...Working memory is a core cognitive function that supports goal-directed behavior and complex thought.We developed a spatial working memory and attention test on paired symbols(SWAPS)which has been proved to be a useful and valid tool for spatial working memory and attention studies in the fields of cognitive psychology,education,and psychiatry.The repeated administration of working memory capacity tests is common in clinical and research settings.Studies suggest that repeated cognitive tests may improve the performance scores also known as retest effects.The systematic investigation of retest effects in SWAPS is critical for interpreting scientific results,but it is still not fully developed.To address this,we recruited 77 college students aged 18–21 years and used SWAPS comprising 72 trials with different memory loads,learning time,and delay span.We repeated the test once a week for five weeks to investigate the retest effects of SWAPS.There were significant retest effects in the first two tests:the accuracy of the SWAPS tests significantly increased,and then stabilized.These findings provide useful information for researchers to appropriately use or interpret the repeated working memory tests.Further experiments are still needed to clarify the factors that mediate the retest effects,and find out the cognitive mechanism that influences the retest effects.展开更多
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri...Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks.展开更多
With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the ...With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the transition toward an intent-driven task-oriented coordination paradigm across the space,ground,and user segments.This study presents a novel intent-driven task-oriented network(IDTN)framework to address task scheduling and resource allocation challenges in SINs.The scheduling problem is formulated as a three-sided matching game that incorporates the preference attributes of entities across all network segments.To manage the variability of random task arrivals and dynamic resources,a context-aware linear upper-confidence-bound online learning mechanism is integrated to reduce decision-making uncertainty.Simulation results demonstrate the effectiveness of the proposed IDTN framework.Compared with conventional baseline methods,the framework achieves significant performance improvements,including a 4.4%-28.9%increase in average system reward,a 6.2%-34.5%improvement in resource utilization,and a 5.6%-35.7%enhancement in user satisfaction.The proposed framework is expected to facilitate the integration and orchestration of space-based platforms.展开更多
The authors regret that there were errors in the affiliations and the funding declaration in the original published version.The affiliations a and b of the original manuscript are"School of Information Engineerin...The authors regret that there were errors in the affiliations and the funding declaration in the original published version.The affiliations a and b of the original manuscript are"School of Information Engineering,Jiangxi Provincial Key Laboratory of Advanced Signal Processing and Intelligent Communications,Nanchang University,Nanchang 330031,China",and"School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China",respectively.The order of the two affiliations are not correct.展开更多
This study tested a multilevel model of the workplace territorial behaviors and employees’knowledge sharing relationship,with team identification serving as a mediator and task interdependence as a moderator.Data wer...This study tested a multilevel model of the workplace territorial behaviors and employees’knowledge sharing relationship,with team identification serving as a mediator and task interdependence as a moderator.Data were collected from 253 employees(females=128,mean age=28.626,SD=6.470)from 40 work teams from different industries in China.Path analysis results indicated that workplace territorial behaviors were associated with lower employee knowledge sharing.Team identification enhanced employee knowledge sharing and partially mediated the relationship between workplace territorial behaviors and employee knowledge sharing.Task interdependence enhanced knowledge sharing and strengthened the relationship between team identification and knowledge sharing.Thesefindings extend the proposition of social information processing theory by revealing the mediating role of team identification in the relationship between workplace territorial behaviors and knowledge sharing,and clarifying the boundary conditions of team identification.Practical implications of thesefindings include a need for managers to foster collaborative atmospheres,design interdependent tasks,and mitigate territorial behaviors to enhance team identification and knowledge sharing.展开更多
With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for ...With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices.展开更多
Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems...Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.展开更多
China’s 2025 Central Economic Work Conference,held in Beijing from December 10 to 11,2025,is one of the most consequential policy-setting meetings of the year.Chaired by Xi Jinping,general secretary of the Communist ...China’s 2025 Central Economic Work Conference,held in Beijing from December 10 to 11,2025,is one of the most consequential policy-setting meetings of the year.Chaired by Xi Jinping,general secretary of the Communist Party of China Central Committee and Chinese president,this year's meeting coincided with the final year of the 14th Five-Year Plan,serving as an assessment of accom-plishments while setting the policy direction for the first year of the 15th Five-Year Plan(2026-2030).展开更多
Chinese women artists have created many works in recent years,to show the magnificent views of the motherland,the lives of Chinese people,and the lively animals and plants.The works contain vibrant colors,to express t...Chinese women artists have created many works in recent years,to show the magnificent views of the motherland,the lives of Chinese people,and the lively animals and plants.The works contain vibrant colors,to express the artists'love for nature and life,as well as their dedication to creation.In this edition,Women of China English Monthly highlights some of the works,to share the beautiful creations with our readers.展开更多
Interaction between learners under group work setting is considered to be significantly influenced by task types. The present empirical study was designed to explore interaction characteristics under convergent tasks ...Interaction between learners under group work setting is considered to be significantly influenced by task types. The present empirical study was designed to explore interaction characteristics under convergent tasks and divergent tasks from three aspects: language production, meaning negotiation and attention to form while performing different types of tasks. The results reveal that there was significant statistical difference in the total language production between two types of tasks. In terms of the occurrence of meaning negotiation and the extent to which students paid attention to language form, there were no significant difference between the two task types.展开更多
Most gear fault diagnosis(GFD)approaches su er from ine ciency when facing with multiple varying working conditions at the same time.In this paper,a non-negative matrix factorization(NMF)-theoretic co-clustering strat...Most gear fault diagnosis(GFD)approaches su er from ine ciency when facing with multiple varying working conditions at the same time.In this paper,a non-negative matrix factorization(NMF)-theoretic co-clustering strategy is proposed specially to classify more than one task at the same time using the high dimension matrix,aiming to o er a fast multi-tasking solution.The short-time Fourier transform(STFT)is first used to obtain the time-frequency features from the gear vibration signal.Then,the optimal clustering numbers are estimated using the Bayesian information criterion(BIC)theory,which possesses the simultaneous assessment capability,compared with traditional validity indexes.Subsequently,the classical/modified NMF-based co-clustering methods are carried out to obtain the classification results in both row and column tasks.Finally,the parameters involved in BIC and NMF algorithms are determined using the gradient ascent(GA)strategy in order to achieve reliable diagnostic results.The Spectra Quest’s Drivetrain Dynamics Simulator gear data sets were analyzed to verify the e ectiveness of the proposed approach.展开更多
Objective Working memory is a key cognitive function in which the prefrontal cortex plays a crucial role. This study aimed to show the firing patterns of a neuronal population in the prefrontal cortex of the rat in a ...Objective Working memory is a key cognitive function in which the prefrontal cortex plays a crucial role. This study aimed to show the firing patterns of a neuronal population in the prefrontal cortex of the rat in a working memory task and to explore how a neuronal ensemble encodes a working memory event. Methods Sprague-Dawley rats were trained in a Y-maze until they reached an 80% correct rate in a working memory task. Then a 16-channel microelectrode array was implanted in the prefrontal cortex. After recovery, neuronal population activity was recorded during the task, using the Cerebus data-acquisition system. Spatio-temporal trains of action potentials were obtained from the original neuronal population signals. Results During the Y-maze working memory task, some neurons showed significantly in- creased firing rates and evident neuronal ensemble activity. Moreover, the anticipatory activity was associated with the delayed alternate choice of the upcoming movement. In correct trials, the averaged pre-event firing rate (10.86 ± 1.82 spikes/ bin) was higher than the post-event rate (8.17 ± 1.15 spikes/bin) (P 〈0.05). However, in incorrect trials, the rates did not differ. Conclusion The results indicate that the anticipatory activity of a neuronal ensemble in the prefrontal cortex may play a role in encoding working memory events.展开更多
Unmanned Aerial Vehicles(UAVs)are useful in dangerous and dynamic tasks such as search-and-rescue,forest surveillance,and anti-terrorist operations.These tasks can be solved better through the collaboration of multipl...Unmanned Aerial Vehicles(UAVs)are useful in dangerous and dynamic tasks such as search-and-rescue,forest surveillance,and anti-terrorist operations.These tasks can be solved better through the collaboration of multiple UAVs under human supervision.However,it is still difficult for human to monitor,understand,predict and control the behaviors of the UAVs due to the task complexity as well as the black-box machine learning and planning algorithms being used.In this paper,the coactive design method is adopted to analyze the cognitive capabilities required for the tasks and design the interdependencies among the heterogeneous teammates of UAVs or human for coherent collaboration.Then,an agent-based task planner is proposed to automatically decompose a complex task into a sequence of explainable subtasks under constrains of resources,execution time,social rules and costs.Besides,a deep reinforcement learning approach is designed for the UAVs to learn optimal policies of a flocking behavior and a path planner that are easy for the human operator to understand and control.Finally,a mixed-initiative action selection mechanism is used to evaluate the learned policies as well as the human’s decisions.Experimental results demonstrate the effectiveness of the proposed methods.展开更多
Purpose: This study aims to explore the relationships between different facets of work task and selection and query-related behavior.Design/methodology/approach:An experiment was conducted to explore the issue. The re...Purpose: This study aims to explore the relationships between different facets of work task and selection and query-related behavior.Design/methodology/approach:An experiment was conducted to explore the issue. The researcher recruited 24 participants and assigned six simulated work task situations to each of them. Each experiment lasted around 2 hours and was recorded by the software tool Morae.Findings: Time(frequency) and time(length) are more closely related to user’s selection and query-related behavior compared to the facet ‘process’ of work task. Knowledge level of work task topic, degree of work task difficulty, and subjective work task complexity are significantly correlated with selection and query-related behavior. Work task difficulty and work task complexity are different concepts. Subjective work task complexity, work task difficulty, and knowledge of work task topic are significantly correlated with user’s selection and query-related behavior.Research limitations/implications: The limitations of this study include a small sample size,limited work task situations, and possible spurious relationships. This study has implications in informing task-based information seeking/search/retrieval research and interactive information retrieval(IIR) systems design.Originality/values: Previous studies usually did not touch upon how different facets of work tasks affected interactive activities. Some studies examining task complexity and information behavior were concerned with how work tasks affect users’ behavior at information-seeking level, rather than at information search level. This study makes contribution to interactive information retrieval,task-based information search and retrieval, and personalization of IR.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61473066in part by the Natural Science Foundation of Hebei Province under Grant No.F2021501020+2 种基金in part by the S&T Program of Qinhuangdao under Grant No.202401A195in part by the Science Research Project of Hebei Education Department under Grant No.QN2025008in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant No.22567637H
文摘Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.
基金supported by Guangdong Basic and Applied Basic Research Project(No.2025A1515012874)Foundation of Yunnan Key Laboratory of Service Computing(No.YNSC24115)+5 种基金Research Project of Pazhou Lab for Excellent Young Scholars(No.PZL2021KF0024)Guangdong Undergraduate Teaching Quality and Teaching Reform ProjectUniversity Research Project of Guangzhou Education Bureau(No.2024312189)Guangzhou Basic and Applied Basic Research Project(No.SL2024A03J00397)National Natural Science Foundation of China(No.62272113)Guangzhou Basic Research Program(No.2024A03J0398)。
文摘Low Earth Orbit(LEO)satellites have gained significant attention for their low-latency communication and computing capabilities but face challenges due to high mobility and limited resources.Existing studies integrate edge computing with LEO satellite networks to optimize task offloading;however,they often overlook the impact of frequent topology changes,unstable transmission links,and intermittent satellite visibility,leading to task execution failures and increased latency.To address these issues,this paper proposes a dynamic integrated spaceground computing framework that optimizes task offloading under LEO satellite mobility constraints.We design an adaptive task migration strategy through inter-satellite links when target satellites become inaccessible.To enhance data transmission reliability,we introduce a communication stability constraint based on transmission bit error rate(BER).Additionally,we develop a genetic algorithm(GA)-based task scheduling method that dynamically allocates computing resources while minimizing latency and energy consumption.Our approach jointly considers satellite computing capacity,link stability,and task execution reliability to achieve efficient task offloading.Experimental results demonstrate that the proposed method significantly improves task execution success rates,reduces system overhead,and enhances overall computational efficiency in LEO satellite networks.
基金supported by the National Key Research and Development Program of China(2022YFB3305900)the National Natural Science Foundation of China(Key Program)(62136003)+2 种基金the National Natural Science Foundation of China(62394345)the Major Science and Technology Projects of Longmen Laboratory(LMZDXM202206)the Fundamental Research Funds for the Central Universities.
文摘Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.
基金the National Natural Science Foundation of China(No.91632103)the Shanghai Education Commission Research and Innovation Program(No.2019-01-07-00-02-E00037)+2 种基金the Program of Shanghai Subject Chief Scientist(No.17XD1401700)the Higher Education Disciplinary Innovation Programthe“Eastern Scholar”Project。
文摘Working memory is a core cognitive function that supports goal-directed behavior and complex thought.We developed a spatial working memory and attention test on paired symbols(SWAPS)which has been proved to be a useful and valid tool for spatial working memory and attention studies in the fields of cognitive psychology,education,and psychiatry.The repeated administration of working memory capacity tests is common in clinical and research settings.Studies suggest that repeated cognitive tests may improve the performance scores also known as retest effects.The systematic investigation of retest effects in SWAPS is critical for interpreting scientific results,but it is still not fully developed.To address this,we recruited 77 college students aged 18–21 years and used SWAPS comprising 72 trials with different memory loads,learning time,and delay span.We repeated the test once a week for five weeks to investigate the retest effects of SWAPS.There were significant retest effects in the first two tests:the accuracy of the SWAPS tests significantly increased,and then stabilized.These findings provide useful information for researchers to appropriately use or interpret the repeated working memory tests.Further experiments are still needed to clarify the factors that mediate the retest effects,and find out the cognitive mechanism that influences the retest effects.
基金funded by the National Key Research and Development Program of China under Grant 2019YFB1803301Beijing Natural Science Foundation (L202002)。
文摘Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks.
基金supported by the National Key Research and Development Program of China(2020YFB1807700)Innovation Capability Support Program of Shaanxi(2024RS-CXTD-01).
文摘With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the transition toward an intent-driven task-oriented coordination paradigm across the space,ground,and user segments.This study presents a novel intent-driven task-oriented network(IDTN)framework to address task scheduling and resource allocation challenges in SINs.The scheduling problem is formulated as a three-sided matching game that incorporates the preference attributes of entities across all network segments.To manage the variability of random task arrivals and dynamic resources,a context-aware linear upper-confidence-bound online learning mechanism is integrated to reduce decision-making uncertainty.Simulation results demonstrate the effectiveness of the proposed IDTN framework.Compared with conventional baseline methods,the framework achieves significant performance improvements,including a 4.4%-28.9%increase in average system reward,a 6.2%-34.5%improvement in resource utilization,and a 5.6%-35.7%enhancement in user satisfaction.The proposed framework is expected to facilitate the integration and orchestration of space-based platforms.
文摘The authors regret that there were errors in the affiliations and the funding declaration in the original published version.The affiliations a and b of the original manuscript are"School of Information Engineering,Jiangxi Provincial Key Laboratory of Advanced Signal Processing and Intelligent Communications,Nanchang University,Nanchang 330031,China",and"School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China",respectively.The order of the two affiliations are not correct.
文摘This study tested a multilevel model of the workplace territorial behaviors and employees’knowledge sharing relationship,with team identification serving as a mediator and task interdependence as a moderator.Data were collected from 253 employees(females=128,mean age=28.626,SD=6.470)from 40 work teams from different industries in China.Path analysis results indicated that workplace territorial behaviors were associated with lower employee knowledge sharing.Team identification enhanced employee knowledge sharing and partially mediated the relationship between workplace territorial behaviors and employee knowledge sharing.Task interdependence enhanced knowledge sharing and strengthened the relationship between team identification and knowledge sharing.Thesefindings extend the proposition of social information processing theory by revealing the mediating role of team identification in the relationship between workplace territorial behaviors and knowledge sharing,and clarifying the boundary conditions of team identification.Practical implications of thesefindings include a need for managers to foster collaborative atmospheres,design interdependent tasks,and mitigate territorial behaviors to enhance team identification and knowledge sharing.
基金supported by the Gansu Province Key Research and Development Plan(No.23YFGA0062)Gansu Provin-cial Innovation Fund(No.2022A-215).
文摘With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices.
基金supported by the National Natural Science Foundation of China(61571149,62001139)the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F0178).
文摘Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.
文摘China’s 2025 Central Economic Work Conference,held in Beijing from December 10 to 11,2025,is one of the most consequential policy-setting meetings of the year.Chaired by Xi Jinping,general secretary of the Communist Party of China Central Committee and Chinese president,this year's meeting coincided with the final year of the 14th Five-Year Plan,serving as an assessment of accom-plishments while setting the policy direction for the first year of the 15th Five-Year Plan(2026-2030).
文摘Chinese women artists have created many works in recent years,to show the magnificent views of the motherland,the lives of Chinese people,and the lively animals and plants.The works contain vibrant colors,to express the artists'love for nature and life,as well as their dedication to creation.In this edition,Women of China English Monthly highlights some of the works,to share the beautiful creations with our readers.
文摘Interaction between learners under group work setting is considered to be significantly influenced by task types. The present empirical study was designed to explore interaction characteristics under convergent tasks and divergent tasks from three aspects: language production, meaning negotiation and attention to form while performing different types of tasks. The results reveal that there was significant statistical difference in the total language production between two types of tasks. In terms of the occurrence of meaning negotiation and the extent to which students paid attention to language form, there were no significant difference between the two task types.
基金Supported by National Natural Science Foundation of China(Grant No.51575102)Jiangsu Postgraduate Research Innovation Program(Grant No.KYCX18_0075).
文摘Most gear fault diagnosis(GFD)approaches su er from ine ciency when facing with multiple varying working conditions at the same time.In this paper,a non-negative matrix factorization(NMF)-theoretic co-clustering strategy is proposed specially to classify more than one task at the same time using the high dimension matrix,aiming to o er a fast multi-tasking solution.The short-time Fourier transform(STFT)is first used to obtain the time-frequency features from the gear vibration signal.Then,the optimal clustering numbers are estimated using the Bayesian information criterion(BIC)theory,which possesses the simultaneous assessment capability,compared with traditional validity indexes.Subsequently,the classical/modified NMF-based co-clustering methods are carried out to obtain the classification results in both row and column tasks.Finally,the parameters involved in BIC and NMF algorithms are determined using the gradient ascent(GA)strategy in order to achieve reliable diagnostic results.The Spectra Quest’s Drivetrain Dynamics Simulator gear data sets were analyzed to verify the e ectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61074131,91132722)the Doctoral Fund of the Ministry of Education of China(20101202110007)
文摘Objective Working memory is a key cognitive function in which the prefrontal cortex plays a crucial role. This study aimed to show the firing patterns of a neuronal population in the prefrontal cortex of the rat in a working memory task and to explore how a neuronal ensemble encodes a working memory event. Methods Sprague-Dawley rats were trained in a Y-maze until they reached an 80% correct rate in a working memory task. Then a 16-channel microelectrode array was implanted in the prefrontal cortex. After recovery, neuronal population activity was recorded during the task, using the Cerebus data-acquisition system. Spatio-temporal trains of action potentials were obtained from the original neuronal population signals. Results During the Y-maze working memory task, some neurons showed significantly in- creased firing rates and evident neuronal ensemble activity. Moreover, the anticipatory activity was associated with the delayed alternate choice of the upcoming movement. In correct trials, the averaged pre-event firing rate (10.86 ± 1.82 spikes/ bin) was higher than the post-event rate (8.17 ± 1.15 spikes/bin) (P 〈0.05). However, in incorrect trials, the rates did not differ. Conclusion The results indicate that the anticipatory activity of a neuronal ensemble in the prefrontal cortex may play a role in encoding working memory events.
基金co-supported by the National Natural Science Foundation of China(Nos.61906203,61876187)the National Key Laboratory of Science and Technology on UAV,Northwestern Polytechnical University,China(No.614230110080817)。
文摘Unmanned Aerial Vehicles(UAVs)are useful in dangerous and dynamic tasks such as search-and-rescue,forest surveillance,and anti-terrorist operations.These tasks can be solved better through the collaboration of multiple UAVs under human supervision.However,it is still difficult for human to monitor,understand,predict and control the behaviors of the UAVs due to the task complexity as well as the black-box machine learning and planning algorithms being used.In this paper,the coactive design method is adopted to analyze the cognitive capabilities required for the tasks and design the interdependencies among the heterogeneous teammates of UAVs or human for coherent collaboration.Then,an agent-based task planner is proposed to automatically decompose a complex task into a sequence of explainable subtasks under constrains of resources,execution time,social rules and costs.Besides,a deep reinforcement learning approach is designed for the UAVs to learn optimal policies of a flocking behavior and a path planner that are easy for the human operator to understand and control.Finally,a mixed-initiative action selection mechanism is used to evaluate the learned policies as well as the human’s decisions.Experimental results demonstrate the effectiveness of the proposed methods.
基金sponsored by National Social Science Foundation of China(Grant No. 11BTQ009)
文摘Purpose: This study aims to explore the relationships between different facets of work task and selection and query-related behavior.Design/methodology/approach:An experiment was conducted to explore the issue. The researcher recruited 24 participants and assigned six simulated work task situations to each of them. Each experiment lasted around 2 hours and was recorded by the software tool Morae.Findings: Time(frequency) and time(length) are more closely related to user’s selection and query-related behavior compared to the facet ‘process’ of work task. Knowledge level of work task topic, degree of work task difficulty, and subjective work task complexity are significantly correlated with selection and query-related behavior. Work task difficulty and work task complexity are different concepts. Subjective work task complexity, work task difficulty, and knowledge of work task topic are significantly correlated with user’s selection and query-related behavior.Research limitations/implications: The limitations of this study include a small sample size,limited work task situations, and possible spurious relationships. This study has implications in informing task-based information seeking/search/retrieval research and interactive information retrieval(IIR) systems design.Originality/values: Previous studies usually did not touch upon how different facets of work tasks affected interactive activities. Some studies examining task complexity and information behavior were concerned with how work tasks affect users’ behavior at information-seeking level, rather than at information search level. This study makes contribution to interactive information retrieval,task-based information search and retrieval, and personalization of IR.