Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos...Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.展开更多
Wireless Body Area Networks(WBANs)comprise various sensors to monitor and collect various vital signals,such as blood pressure,pulse,heartbeat,body temperature,and blood sugar.A dense and mobile WBAN often suffers fro...Wireless Body Area Networks(WBANs)comprise various sensors to monitor and collect various vital signals,such as blood pressure,pulse,heartbeat,body temperature,and blood sugar.A dense and mobile WBAN often suffers from interference,which causes serious problems,such as wasting energy and degrading throughput.In reality,not all of the sensors in WBAN need to be active at the same time.Therefore,they can be divided into different groups so that each group works in turn to avoid interference.In this paper,a Nest-Based WBAN Scheduling(NBWS)algorithm is proposed to cluster sensors of the same types in a single or multiple WBANs into different groups to avoid interference.Particularly,we borrow the graph coloring theory to schedule all groups to work using a Time Division for Multimodal Sensor(TDMS)group scheduling model.Both theoretical analysis and experimental results demonstrate that the proposed NBWS algorithm performs better in terms of frequency of collisions,transmission delay,system throughput,and energy consumption compared to the counterpart methods.展开更多
With the rapid development and widespread application of Wireless Body Area Networks(WBANs),the traditional centralized system architecture cannot handle the massive data generated by the edge devices.Meanwhile,in ord...With the rapid development and widespread application of Wireless Body Area Networks(WBANs),the traditional centralized system architecture cannot handle the massive data generated by the edge devices.Meanwhile,in order to ensure the security of physiological privacy data and the identity privacy of patients,this paper presents a privacy protection strategy for Mobile Edge Computing(MEC)enhanced WBANs,which leverages the blockchain-based decentralized MEC paradigm to support efficient transmission of privacy information with low latency,high reliability within a high-demand data security scenario.On this basis,the Merkle tree optimization model is designed to authenticate nodes and to verify the source of physiological data.Furthermore,a hybrid signature algorithm is devised to guarantee the node anonymity with unforgeability,data integrity and reduced delay.The security performance analysis and simulation results show that our proposed strategy not only reduces the delay,but also secures the privacy and transmission of sensitive WBANs data.展开更多
This paper aims at analyzing the security issues that lie in the application layer (AL) protocols when users connect to the Internet via a wireless local area network (WLAN) through an access point. When adversaries l...This paper aims at analyzing the security issues that lie in the application layer (AL) protocols when users connect to the Internet via a wireless local area network (WLAN) through an access point. When adversaries launch deauthentication flood attacks cutting users' connection, the connection managers will automatically research the last access point's extended service set identifier (ESSID) and then re-establish connection. However, such re-connection can lead the users to a fake access point with the same ESSID set by attackers. As the attackers hide behind users' access points, they can pass AL's authentication and security schemes, e.g. secure socket layer (SSL). We have proved that they can even spy on users' account details, passwords, data and privacy.展开更多
Wireless Body Area Networks(WBANs) are expected to achieve high reliable communications among a large number of sensors.The outage probability can be used to measure the reliability of the WBAN.In this paper,we optimi...Wireless Body Area Networks(WBANs) are expected to achieve high reliable communications among a large number of sensors.The outage probability can be used to measure the reliability of the WBAN.In this paper,we optimize the outage probability with the harvested energy as constraints.Firstly,the optimal transmit power of the sensor is obtained while considering a single link between an access point(AP) located on the waist and a sensor attached on the wrist over the Rayleigh fading channel.Secondly,an optimization problem is formed to minimize the outage probability.Finally,we convert the non-convex optimization problem into convex solved by the Lagrange multiplier method.Simulations show that the optimization problem is solvable.The outage probability is optimized by performing power allocation at the sensor.And our proposed algorithm achieves minimizing the outage probability when the sensor uses energy harvesting.We also demonstrate that the average outage probability is reduced with the increase of the harvested energy.展开更多
Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive amb...Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time, and provide real-time updates of the patient’s status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for a WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solu-tions towards in-body and on-body sensor networks.展开更多
A wireless body area network(WBAN)consists of tiny healthmonitoring sensors implanted in or placed on the human body.These sensors are used to collect and communicate human medical and physiological data and represent...A wireless body area network(WBAN)consists of tiny healthmonitoring sensors implanted in or placed on the human body.These sensors are used to collect and communicate human medical and physiological data and represent a subset of the Internet of Things(IoT)systems.WBANs are connected to medical servers that monitor patients’health.This type of network can protect critical patients’lives due to the ability to monitor patients’health continuously and remotely.The inter-WBAN communication provides a dynamic environment for patients allowing them to move freely.However,during patient movement,the WBAN patient nodes may become out of range of a remote base station.Hence,to handle this problem,an efficient method for inter-WBAN communication is needed.In this study,a method using a cluster-based routing technique is proposed.In the proposed method,a cluster head(CH)acts as a gateway between the cluster members and the external network,which helps to reduce the network’s overhead.In clustering,the cluster’s lifetime is a vital parameter for network efficiency.Thus,to optimize the CH’s selection process,three evolutionary algorithms are employed,namely,the ant colony optimization(ACO),multi-objective particle swarm optimization(MOPSO),and the comprehensive learning particle swarm optimization(CLPSO).The performance of the proposed method is verified by extensive experiments by varying values of different parameters,including the transmission range,node number,node mobility,and grid size.A comprehensive comparative analysis of the three algorithms is conducted by extensive experiments.The results show that,compared with the other methods,the proposed ACO-based method can form clusters more efficiently and increase network lifetime,thus achieving remarkable network and energy efficiency.The proposed ACO-based technique can also be used in other types of ad-hoc networks as well.展开更多
In Wireless Body Area Networks(WBANs)with respect to health care,sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically.The great challenges posed to healthca...In Wireless Body Area Networks(WBANs)with respect to health care,sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically.The great challenges posed to healthcare WBANs are the black hole and sink hole attacks.Data from deployed sensor nodes are attracted by sink hole or black hole nodes while grabbing the shortest path.Identifying this issue is quite a challenging task as a small variation in medicine intake may result in a severe illness.This work proposes a hybrid detection framework for attacks by applying a Proportional Coinciding Score(PCS)and an MK-Means algorithm,which is a well-known machine learning technique used to raise attack detection accuracy and decrease computational difficulties while giving treatments for heartache and respiratory issues.First,the gathered training data feature count is reduced through data pre-processing in the PCS.Second,the pre-processed features are sent to the MK-Means algorithm for training the data and promoting classification.Third,certain attack detection measures given by the intrusion detection system,such as the number of data packages trans-received,are identified by the MK-Means algorithm.This study demonstrates that the MK-Means framework yields a high detection accuracy with a low packet loss rate,low communication overhead,and reduced end-to-end delay in the network and improves the accuracy of biomedical data.展开更多
Wireless body area networks(WBANs)are an emerging technology for the real-time monitoring of physiological signals.WBANs provide a mechanism for collecting,storing,and transmitting physiological data to healthcare pro...Wireless body area networks(WBANs)are an emerging technology for the real-time monitoring of physiological signals.WBANs provide a mechanism for collecting,storing,and transmitting physiological data to healthcare providers.However,the open wireless channel and limited resources of sensors bring security challenges.To ensure physiological data security,this paper provides an efficient Certificateless Public Key Infrastructure Heterogeneous Ring Signcryption(CP-HRSC)scheme,in which sensors are in a certificateless cryptosystem(CLC)environment,and the server is in a public key infrastructure(PKI)environment.CLC could solve the limitations of key escrow in identity-based cryptography(IBC)and certificate management for public keys in PKI.While PKI is suited for the server because it is widely used on the Internet.Furthermore,this paper designs a ring signcryption method that allows the controller to anonymously encrypt physiological data on behalf of a set of sensors,but the server does not exactly know who the sensor is.The construction of this paper can achieve anonymity,confidentiality,authentication,non-repudiation,and integrity in a logically single step.Under the computational Diffie-Hellman(CDH)problem,the formal security proof is provided in the random oracle model(ROM).This paper demonstrates that this scheme has indistinguishability against adaptive chosen ciphertext attacks(IND-CCA2)and existential unforgeability against adaptive chosen message attacks(EUF-CMA).In terms of computational cost and energy usage,a comprehensive performance analysis demonstrates that the proposed scheme is the most effective.Compared to the three existing schemes,the computational cost of this paper’s scheme is reduced by about 49.5%,4.1%,and 8.4%,and the energy usage of our scheme is reduced by about 49.4%,3.7%,and 14.2%,respectively.展开更多
Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large ext...Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large extent on the sensing coverage, and its lifetime is determined by its energy consumption. In this paper, an energy-efficient Area Coverage protocol for Heterogeneous Energy sensor networks (ACHE) is proposed. ACHE can achieve a good performance in terms of sensing area coverage, lifetime by minimizing energy consumption for control overhead, and balancing the energy load among all nodes. Adopting the hierarchical clustering idea, ACHE selects the active nodes based on the average residual energy of neighboring nodes and its own residual energy parameters. Our simulation demonstrates that ACHE not only provide the high quality of sensing coverage, but also has the good performance in the energy efficiency. In addition, ACHE can better adapt the applications with the great heterogeneous energy capacities in the sensor networks, as well as effectively reduce the control overhead.展开更多
Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, a...Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, and body position to be continuously monitored.展开更多
Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a sma...Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed.展开更多
In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimen...In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimental results,namely,light intensity factor ∈ and α,to represent the light intensity coefficient and influence factor.The remaining energy consumption of mobile terminal equipment was measured respectively,the distance parameter from device to device,the maximum transmission energy consumption,and the correlation coefficient between environmental parameters and energy consumption parameters was analyzed.This paper discusses the impact of different topological structures on the environment,energy saving and emission reduction in the relatively flat terrain area,based on the planning scheme of parking area within the coverage range of base station signal,the transmission capability of vehicles as mobile device nodes within the coverage range of base station signal,and the signal coverage range of base station under different light intensity.As the distance between the base station and the vehicle mobile device node changes,the maximum transmission energy consumption of the mobile device node is obtained.Based on the above factors,the optimal performance optimization parking scheme and the optimal energy consumption optimization transmission scheme are obtained.展开更多
One way to reduce energy consumption in wireless sensor networks is to reduce the number of active nodes in the network. When sensors are redundantly deployed, a subset of sensors should be selected to actively monito...One way to reduce energy consumption in wireless sensor networks is to reduce the number of active nodes in the network. When sensors are redundantly deployed, a subset of sensors should be selected to actively monitor the field (referred to as a "cover"), whereas the rest of the sensors should be put to sleep to conserve their batteries. In this paper, a learning automata based algorithm for energy-efficient monitoring in wireless sensor networks (EEMLA) is proposed. Each node in EEMLA algorithm is equipped with a learning automaton which decides for the node to be active or not at any time during the operation of the network. Using feedback received from neighboring nodes, each node gradually learns its proper state during the operation of the network. Experimental results have shown that the proposed monitoring algorithm in comparison to other existing methods such as Tian and LUC can better prolong the network lifetime.展开更多
A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as...A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.展开更多
A wireless body area network offers cost-effective solutions for healthcare infrastructure. An adaptive transmission algorithm is designed to handle channel efficiency, which adjusts packet size according to the diffe...A wireless body area network offers cost-effective solutions for healthcare infrastructure. An adaptive transmission algorithm is designed to handle channel efficiency, which adjusts packet size according to the difference in feature-point values that indicate biomedical signal characteristics. Furthermore, we propose a priority-adjustment method that enhances quality of service while guaranteeing signal integrity. A large number of simulations were carried out for performance evaluation. We use electrocardiogram and electromyogram signals as reference biomedical signals for performance verification. From the simulation results, we find that the average packet latency of proposed scheme is enhanced by 30% compared to conventional method. The simulation results also demonstrate that the proposed algorithm achieves significant performance improvement in terms of drop rates of high-priority packets around 0.3%-0.9 %.展开更多
This paper introduces a novel robot for outer surface inspection of boiler tubes. The paper describes the hardware system, wireless communication strategy, communication procedure and system software of the robot. The...This paper introduces a novel robot for outer surface inspection of boiler tubes. The paper describes the hardware system, wireless communication strategy, communication procedure and system software of the robot. The WLAN technology is used in the robot. It solves the problem of shielding generated by iron boiler and 11Mbps bandwidth made it possible for video and control stream real-time transmit within the same channel. Though TCP/IP protocol is robust, serial server is a transparent channel but cannot detect error and retransmit the data. In order to improve the reliability of serial communication, a new communication protocol is proposed. Key words boiler tubes - mobile robotics - wireless local area network Project Supported by the National High-Tech Program (Grant No. 2002AA420080)展开更多
In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC pr...In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC protocol for WBAN. Several sources that contribute to the energy inefficiency of WBAN are identified, and features of the various MAC protocols qualitatively compared. Then, we further investigate some representative TDMA-based energy-efficient MAC protocols for WBAN by emphasizing their strengths and weaknesses. Finally, we conclude with a number of open research issues with regard to WBAN MAC layer.展开更多
The accelerated development of wireless network technology has resulted in the emergence of Wireless Body Area Network(WBAN),which is a technology commonly used in the medical field.WBAN consists of tiny sensor nodes ...The accelerated development of wireless network technology has resulted in the emergence of Wireless Body Area Network(WBAN),which is a technology commonly used in the medical field.WBAN consists of tiny sensor nodes that interconnect with each other and set in the human body to collect and transmit the patient data to the physician,to monitor the patients remotely.These nodes typically have limited battery energy that led to a shortage of network lifetime.Therefore,energy efficiency is considered one of the most demanding challenges in routing design for WBAN.Many proposed routing mechanisms inWBAN did not cover the source node energy and energy harvesting techniques.Therefore,this study proposes an Efficient Energy Aware Routing(EEAR)mechanism.This paper constructs a path cost function that considers three parameters:residual energy,number of hops to the sink,and the distance between the nodes.Besides,data aggregationwith filtration and hybrid energy harvesting technique are used to extend the network lifetime,reduce the network traffic load,andmaintain the source node energy.Extensive simulations using MATLAB have been performed to evaluate the performance of the proposed mechanism.EEAR is contrasted with the two latest schemes,called Priority-based Congestion-avoidance Routing Protocol(PCRP)and Energy Efficient Routing Protocol(EERP).The results show the significant performance of theEEARmechanism in terms of network lifetime,residual energy,network stability,and throughput.展开更多
Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to con...Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to consider in WBAN is a node’s lifetime.Improving the lifetime of nodes is critical to address many issues,such as utility and reliability.Existing routing protocols have addressed the energy conservation problem but considered only a few parameters,thus affecting their performance.Moreover,most of the existing schemes did not consider traffic prioritization which is critical in WBANs.In this paper,an adaptive multi-cost routing protocol is proposed with a multi-objective cost function considering minimum distance from sink,temperature of sensor nodes,priority of sensed data,and maximum residual energy on sensor nodes.The performance of the proposed protocol is compared with the existing schemes for the parameters:network lifetime,stability period,throughput,energy consumption,and path loss.It is evident from the obtained results that the proposed protocol improves network lifetime and stability period by 30%and 15%,respectively,as well as outperforms the existing protocols in terms of throughput,energy consumption,and path loss.展开更多
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science&Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
基金the Ningbo International Science and Technology Cooperation Programme(2016D10008)the Ningbo Key Science and Technology plan(2025)projects(2018B10075,2019B10125,2019B10028)+2 种基金the Marine Biotechnology and Marine Engineering Discipline Group(422004582)the Project of Research and Development of Intelligent Resource Allocation and Sharing Platform for Marine Electronic Information Industry(2017GY116)the Key science and technology projects of Zhejiang Province(2020C03064).
文摘Wireless Body Area Networks(WBANs)comprise various sensors to monitor and collect various vital signals,such as blood pressure,pulse,heartbeat,body temperature,and blood sugar.A dense and mobile WBAN often suffers from interference,which causes serious problems,such as wasting energy and degrading throughput.In reality,not all of the sensors in WBAN need to be active at the same time.Therefore,they can be divided into different groups so that each group works in turn to avoid interference.In this paper,a Nest-Based WBAN Scheduling(NBWS)algorithm is proposed to cluster sensors of the same types in a single or multiple WBANs into different groups to avoid interference.Particularly,we borrow the graph coloring theory to schedule all groups to work using a Time Division for Multimodal Sensor(TDMS)group scheduling model.Both theoretical analysis and experimental results demonstrate that the proposed NBWS algorithm performs better in terms of frequency of collisions,transmission delay,system throughput,and energy consumption compared to the counterpart methods.
基金This work was supported in part by the National Natural Science Foundation of China(61871062,61771082 and 61901071)in part by the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(CXTDX201601020)+1 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN201800615)General Project of Natural Science Foundation of Chongqing(cstc2019jcyj-msxm1238).
文摘With the rapid development and widespread application of Wireless Body Area Networks(WBANs),the traditional centralized system architecture cannot handle the massive data generated by the edge devices.Meanwhile,in order to ensure the security of physiological privacy data and the identity privacy of patients,this paper presents a privacy protection strategy for Mobile Edge Computing(MEC)enhanced WBANs,which leverages the blockchain-based decentralized MEC paradigm to support efficient transmission of privacy information with low latency,high reliability within a high-demand data security scenario.On this basis,the Merkle tree optimization model is designed to authenticate nodes and to verify the source of physiological data.Furthermore,a hybrid signature algorithm is devised to guarantee the node anonymity with unforgeability,data integrity and reduced delay.The security performance analysis and simulation results show that our proposed strategy not only reduces the delay,but also secures the privacy and transmission of sensitive WBANs data.
基金the National Science Council (No. NSC-99-2219-E-033-001)the Foundation of the Chung Yuan Christian University (1004) (No. CYCU-EECS.9801)
文摘This paper aims at analyzing the security issues that lie in the application layer (AL) protocols when users connect to the Internet via a wireless local area network (WLAN) through an access point. When adversaries launch deauthentication flood attacks cutting users' connection, the connection managers will automatically research the last access point's extended service set identifier (ESSID) and then re-establish connection. However, such re-connection can lead the users to a fake access point with the same ESSID set by attackers. As the attackers hide behind users' access points, they can pass AL's authentication and security schemes, e.g. secure socket layer (SSL). We have proved that they can even spy on users' account details, passwords, data and privacy.
文摘Wireless Body Area Networks(WBANs) are expected to achieve high reliable communications among a large number of sensors.The outage probability can be used to measure the reliability of the WBAN.In this paper,we optimize the outage probability with the harvested energy as constraints.Firstly,the optimal transmit power of the sensor is obtained while considering a single link between an access point(AP) located on the waist and a sensor attached on the wrist over the Rayleigh fading channel.Secondly,an optimization problem is formed to minimize the outage probability.Finally,we convert the non-convex optimization problem into convex solved by the Lagrange multiplier method.Simulations show that the optimization problem is solvable.The outage probability is optimized by performing power allocation at the sensor.And our proposed algorithm achieves minimizing the outage probability when the sensor uses energy harvesting.We also demonstrate that the average outage probability is reduced with the increase of the harvested energy.
文摘Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time, and provide real-time updates of the patient’s status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for a WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solu-tions towards in-body and on-body sensor networks.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)(No.NRF-2018R1C1B5038818).
文摘A wireless body area network(WBAN)consists of tiny healthmonitoring sensors implanted in or placed on the human body.These sensors are used to collect and communicate human medical and physiological data and represent a subset of the Internet of Things(IoT)systems.WBANs are connected to medical servers that monitor patients’health.This type of network can protect critical patients’lives due to the ability to monitor patients’health continuously and remotely.The inter-WBAN communication provides a dynamic environment for patients allowing them to move freely.However,during patient movement,the WBAN patient nodes may become out of range of a remote base station.Hence,to handle this problem,an efficient method for inter-WBAN communication is needed.In this study,a method using a cluster-based routing technique is proposed.In the proposed method,a cluster head(CH)acts as a gateway between the cluster members and the external network,which helps to reduce the network’s overhead.In clustering,the cluster’s lifetime is a vital parameter for network efficiency.Thus,to optimize the CH’s selection process,three evolutionary algorithms are employed,namely,the ant colony optimization(ACO),multi-objective particle swarm optimization(MOPSO),and the comprehensive learning particle swarm optimization(CLPSO).The performance of the proposed method is verified by extensive experiments by varying values of different parameters,including the transmission range,node number,node mobility,and grid size.A comprehensive comparative analysis of the three algorithms is conducted by extensive experiments.The results show that,compared with the other methods,the proposed ACO-based method can form clusters more efficiently and increase network lifetime,thus achieving remarkable network and energy efficiency.The proposed ACO-based technique can also be used in other types of ad-hoc networks as well.
基金funded by Stefan cel Mare University of Suceava,Romania.
文摘In Wireless Body Area Networks(WBANs)with respect to health care,sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically.The great challenges posed to healthcare WBANs are the black hole and sink hole attacks.Data from deployed sensor nodes are attracted by sink hole or black hole nodes while grabbing the shortest path.Identifying this issue is quite a challenging task as a small variation in medicine intake may result in a severe illness.This work proposes a hybrid detection framework for attacks by applying a Proportional Coinciding Score(PCS)and an MK-Means algorithm,which is a well-known machine learning technique used to raise attack detection accuracy and decrease computational difficulties while giving treatments for heartache and respiratory issues.First,the gathered training data feature count is reduced through data pre-processing in the PCS.Second,the pre-processed features are sent to the MK-Means algorithm for training the data and promoting classification.Third,certain attack detection measures given by the intrusion detection system,such as the number of data packages trans-received,are identified by the MK-Means algorithm.This study demonstrates that the MK-Means framework yields a high detection accuracy with a low packet loss rate,low communication overhead,and reduced end-to-end delay in the network and improves the accuracy of biomedical data.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.SJCX22_1677).
文摘Wireless body area networks(WBANs)are an emerging technology for the real-time monitoring of physiological signals.WBANs provide a mechanism for collecting,storing,and transmitting physiological data to healthcare providers.However,the open wireless channel and limited resources of sensors bring security challenges.To ensure physiological data security,this paper provides an efficient Certificateless Public Key Infrastructure Heterogeneous Ring Signcryption(CP-HRSC)scheme,in which sensors are in a certificateless cryptosystem(CLC)environment,and the server is in a public key infrastructure(PKI)environment.CLC could solve the limitations of key escrow in identity-based cryptography(IBC)and certificate management for public keys in PKI.While PKI is suited for the server because it is widely used on the Internet.Furthermore,this paper designs a ring signcryption method that allows the controller to anonymously encrypt physiological data on behalf of a set of sensors,but the server does not exactly know who the sensor is.The construction of this paper can achieve anonymity,confidentiality,authentication,non-repudiation,and integrity in a logically single step.Under the computational Diffie-Hellman(CDH)problem,the formal security proof is provided in the random oracle model(ROM).This paper demonstrates that this scheme has indistinguishability against adaptive chosen ciphertext attacks(IND-CCA2)and existential unforgeability against adaptive chosen message attacks(EUF-CMA).In terms of computational cost and energy usage,a comprehensive performance analysis demonstrates that the proposed scheme is the most effective.Compared to the three existing schemes,the computational cost of this paper’s scheme is reduced by about 49.5%,4.1%,and 8.4%,and the energy usage of our scheme is reduced by about 49.4%,3.7%,and 14.2%,respectively.
文摘Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large extent on the sensing coverage, and its lifetime is determined by its energy consumption. In this paper, an energy-efficient Area Coverage protocol for Heterogeneous Energy sensor networks (ACHE) is proposed. ACHE can achieve a good performance in terms of sensing area coverage, lifetime by minimizing energy consumption for control overhead, and balancing the energy load among all nodes. Adopting the hierarchical clustering idea, ACHE selects the active nodes based on the average residual energy of neighboring nodes and its own residual energy parameters. Our simulation demonstrates that ACHE not only provide the high quality of sensing coverage, but also has the good performance in the energy efficiency. In addition, ACHE can better adapt the applications with the great heterogeneous energy capacities in the sensor networks, as well as effectively reduce the control overhead.
文摘Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, and body position to be continuously monitored.
基金supported by the National Natural Science Foundation of China (No.61074165 and No.61273064)Jilin Provincial Science & Technology Department Key Scientific and Technological Project (No.20140204034GX)Jilin Province Development and Reform Commission Project (No.2015Y043)
文摘Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed.
文摘In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimental results,namely,light intensity factor ∈ and α,to represent the light intensity coefficient and influence factor.The remaining energy consumption of mobile terminal equipment was measured respectively,the distance parameter from device to device,the maximum transmission energy consumption,and the correlation coefficient between environmental parameters and energy consumption parameters was analyzed.This paper discusses the impact of different topological structures on the environment,energy saving and emission reduction in the relatively flat terrain area,based on the planning scheme of parking area within the coverage range of base station signal,the transmission capability of vehicles as mobile device nodes within the coverage range of base station signal,and the signal coverage range of base station under different light intensity.As the distance between the base station and the vehicle mobile device node changes,the maximum transmission energy consumption of the mobile device node is obtained.Based on the above factors,the optimal performance optimization parking scheme and the optimal energy consumption optimization transmission scheme are obtained.
基金supported by the Islamic Azad University Urmia Brach,Iran
文摘One way to reduce energy consumption in wireless sensor networks is to reduce the number of active nodes in the network. When sensors are redundantly deployed, a subset of sensors should be selected to actively monitor the field (referred to as a "cover"), whereas the rest of the sensors should be put to sleep to conserve their batteries. In this paper, a learning automata based algorithm for energy-efficient monitoring in wireless sensor networks (EEMLA) is proposed. Each node in EEMLA algorithm is equipped with a learning automaton which decides for the node to be active or not at any time during the operation of the network. Using feedback received from neighboring nodes, each node gradually learns its proper state during the operation of the network. Experimental results have shown that the proposed monitoring algorithm in comparison to other existing methods such as Tian and LUC can better prolong the network lifetime.
文摘A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.
基金supported by Inha University Research Grant,Korea
文摘A wireless body area network offers cost-effective solutions for healthcare infrastructure. An adaptive transmission algorithm is designed to handle channel efficiency, which adjusts packet size according to the difference in feature-point values that indicate biomedical signal characteristics. Furthermore, we propose a priority-adjustment method that enhances quality of service while guaranteeing signal integrity. A large number of simulations were carried out for performance evaluation. We use electrocardiogram and electromyogram signals as reference biomedical signals for performance verification. From the simulation results, we find that the average packet latency of proposed scheme is enhanced by 30% compared to conventional method. The simulation results also demonstrate that the proposed algorithm achieves significant performance improvement in terms of drop rates of high-priority packets around 0.3%-0.9 %.
文摘This paper introduces a novel robot for outer surface inspection of boiler tubes. The paper describes the hardware system, wireless communication strategy, communication procedure and system software of the robot. The WLAN technology is used in the robot. It solves the problem of shielding generated by iron boiler and 11Mbps bandwidth made it possible for video and control stream real-time transmit within the same channel. Though TCP/IP protocol is robust, serial server is a transparent channel but cannot detect error and retransmit the data. In order to improve the reliability of serial communication, a new communication protocol is proposed. Key words boiler tubes - mobile robotics - wireless local area network Project Supported by the National High-Tech Program (Grant No. 2002AA420080)
基金supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)under Grant No.NIPA-2011-(C1090-1121-0002)
文摘In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC protocol for WBAN. Several sources that contribute to the energy inefficiency of WBAN are identified, and features of the various MAC protocols qualitatively compared. Then, we further investigate some representative TDMA-based energy-efficient MAC protocols for WBAN by emphasizing their strengths and weaknesses. Finally, we conclude with a number of open research issues with regard to WBAN MAC layer.
文摘The accelerated development of wireless network technology has resulted in the emergence of Wireless Body Area Network(WBAN),which is a technology commonly used in the medical field.WBAN consists of tiny sensor nodes that interconnect with each other and set in the human body to collect and transmit the patient data to the physician,to monitor the patients remotely.These nodes typically have limited battery energy that led to a shortage of network lifetime.Therefore,energy efficiency is considered one of the most demanding challenges in routing design for WBAN.Many proposed routing mechanisms inWBAN did not cover the source node energy and energy harvesting techniques.Therefore,this study proposes an Efficient Energy Aware Routing(EEAR)mechanism.This paper constructs a path cost function that considers three parameters:residual energy,number of hops to the sink,and the distance between the nodes.Besides,data aggregationwith filtration and hybrid energy harvesting technique are used to extend the network lifetime,reduce the network traffic load,andmaintain the source node energy.Extensive simulations using MATLAB have been performed to evaluate the performance of the proposed mechanism.EEAR is contrasted with the two latest schemes,called Priority-based Congestion-avoidance Routing Protocol(PCRP)and Energy Efficient Routing Protocol(EERP).The results show the significant performance of theEEARmechanism in terms of network lifetime,residual energy,network stability,and throughput.
文摘Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to consider in WBAN is a node’s lifetime.Improving the lifetime of nodes is critical to address many issues,such as utility and reliability.Existing routing protocols have addressed the energy conservation problem but considered only a few parameters,thus affecting their performance.Moreover,most of the existing schemes did not consider traffic prioritization which is critical in WBANs.In this paper,an adaptive multi-cost routing protocol is proposed with a multi-objective cost function considering minimum distance from sink,temperature of sensor nodes,priority of sensed data,and maximum residual energy on sensor nodes.The performance of the proposed protocol is compared with the existing schemes for the parameters:network lifetime,stability period,throughput,energy consumption,and path loss.It is evident from the obtained results that the proposed protocol improves network lifetime and stability period by 30%and 15%,respectively,as well as outperforms the existing protocols in terms of throughput,energy consumption,and path loss.