Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been...Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.展开更多
In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimen...In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimental results,namely,light intensity factor ∈ and α,to represent the light intensity coefficient and influence factor.The remaining energy consumption of mobile terminal equipment was measured respectively,the distance parameter from device to device,the maximum transmission energy consumption,and the correlation coefficient between environmental parameters and energy consumption parameters was analyzed.This paper discusses the impact of different topological structures on the environment,energy saving and emission reduction in the relatively flat terrain area,based on the planning scheme of parking area within the coverage range of base station signal,the transmission capability of vehicles as mobile device nodes within the coverage range of base station signal,and the signal coverage range of base station under different light intensity.As the distance between the base station and the vehicle mobile device node changes,the maximum transmission energy consumption of the mobile device node is obtained.Based on the above factors,the optimal performance optimization parking scheme and the optimal energy consumption optimization transmission scheme are obtained.展开更多
Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource...Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption.展开更多
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the...Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.展开更多
This article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-...This article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-to-send (RTS/CTS) dialogue on a common channel and flexibly opts for conflict-free traffic channels to carry out the data packet transmission on the basis of a new channel selection scheme. The acknowledgment (ACK) packet for the data packet transmission is sent back to the sender over another ...展开更多
A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum...A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum independent sets (MISs) are obtained from a contention graph by the proposed approximation algorithm with low complexity. Then, a weighted contention graph is obtained using the number of contention vertices between two MISs as a weighted value. Links are allocated to channels by the weighted contention graph to minimize conflicts between independent sets. Finally, after channel allocation, each node allocates network interface cards (NICs) to links that are allocated channels according to the queue lengths of NICs. Simulations are conducted to evaluate the proposed algorithm. The results show that the proposed algorithm significantly improves the network throughput and decreases the end to end delay.展开更多
It is a hot issue in communication research field to select the best network for Heterogeneous Wireless Networks(HWNs),and it is also a difficult problem to reduce the handoff number of vertical handoff.In order to so...It is a hot issue in communication research field to select the best network for Heterogeneous Wireless Networks(HWNs),and it is also a difficult problem to reduce the handoff number of vertical handoff.In order to solve this problem,the paper proposes a multiple attribute network selection algorithm based on Analytic Hierarchy Process(AHP)and synergetic theory.The algorithm applies synergetics to network selection,considering the candidate network as a compound system composed of multiple attribute subsystems,and combines the subsystem order degree with AHP weight to obtain entropy of the compound system,which is opposite the synergy degree of a network system.The greater the synergy degree,the better the network performance.The algorithm takes not only the coordination of objective attributes but also Quality of Service(QoS)requirements into consideration,ensuring that users select the network with overall good performance.The simulation results show that the proposed algorithm can effectively reduce the handoff number and provide uses with satisfactory QoS according to different services.展开更多
The core of network security is the risk assessment. In this letter,a risk assessment method is introduced to estimate the wireless network security. The method,which combines Analytic Hier-archy Process (AHP) method ...The core of network security is the risk assessment. In this letter,a risk assessment method is introduced to estimate the wireless network security. The method,which combines Analytic Hier-archy Process (AHP) method and fuzzy logical method,is applied to the risk assessment. Fuzzy logical method is applied to judge the important degree of each factor in the aspects of the probability,the influence and the uncontrollability,not to directly judge the important degree itself. The risk as-sessment is carved up 3 layers applying AHP method,the sort weight of the third layer is calculated by fuzzy logical method. Finally,the important degree is calculated by AHP method. By comparing the important degree of each factor,the risk which can be controlled by taking measures is known. The study of the case shows that the method can be easily used to the risk assessment of the wireless network security and its results conform to the actual situation.展开更多
In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteris...In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.展开更多
Wired equivalent security is difficult to provide in wireless networks due to high dynamics, wireless link vulnerability, and decentralization. The Elliptic Curve Digital Signature Algorithm(ECDSA) has been applied ...Wired equivalent security is difficult to provide in wireless networks due to high dynamics, wireless link vulnerability, and decentralization. The Elliptic Curve Digital Signature Algorithm(ECDSA) has been applied to wireless networks because of its low computational cost and short key size, which reduces the overheads in a wireless environment. This study improves the ECDSA scheme by reducing its time complexity. The significant advantage of the algorithm is that our new scheme needs not to calculate modular inverse operation in the phases of signature generation and signature verification. Such an improvement makes the proposed scheme more efficient and secure.展开更多
Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-com...Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-complete problem, the available time-based retransmission scheme and its enhanced retransmission scheme have exponential computational complexity and thus are not scalable to large networks. In this paper, we present an efficient heuristic scheme based on hypergraph coloring and also its enhanced heuristic scheme to improve the transmission efficiency. Basically, our proposed schemes fi rst create a hypergraph according to the packet-loss matrix. Then our schemes solve the problem of generating XORed packets by coloring the edges of hypergraph. Extensive simulation results demonstrate that, the heuristic scheme based on hypergraph coloring and its enhanced scheme can achieve almost the same transmission efficiency as the available ones, but have much lower computational complexity, which is very important for the wireless devices without high computation capacity.展开更多
The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy R...The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.展开更多
In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represe...In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.展开更多
As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of a...As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of activity related to lo- cation-verification techniques in wireless networks. In particular, there has been a specific focus on intelligent transport systems because of the mission-critical nature of vehicle location verification. In this paper, we review recent research on wireless location verification related to vehicular networks. We focus on location verification systems that rely on for- mal mathematical classification frameworks and show how many systems are either partially or fully encompassed by such frameworks.展开更多
Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC...Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.展开更多
With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource sch...With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource scheduling is not suitable for MWNs due to the special environment. In this paper,we introduce the collaborative relay communication in distributed MWNs to improve the link reliability, and propose an orthogonal time-frequency resource block reservation based multiple access(RRMA) scheme for both one-hop direct link and two-hop collaborative relay link to reduce the interference. To further improve the network performance, we formulate an energy efficiency(EE) maximization resource allocation problem and solve it by an iterative algorithm based on the Dinkelbach method. Finally, numerical results are provided to investigate the proposed RRMA scheme and resource allocation algorithm, showing that the low outage probability and transmission delay can be attained by the proposed RRMA scheme. Moreover,the proposed resource allocation algorithm is capable of achieving high EE in distributed MWNs.展开更多
Dynamic spectrum sharing and cognitive radio networks were proposed to enhance the Radio Frequency(RF)spectrum utilization.However,there are several challenges to realize them in real systems,such as sensing uncertain...Dynamic spectrum sharing and cognitive radio networks were proposed to enhance the Radio Frequency(RF)spectrum utilization.However,there are several challenges to realize them in real systems,such as sensing uncertainty causing issues to licensed users,business models for licensed service providers.Wireless virtualization is regarded as a technology that leverages service level agreements to sublease unused or underutilized RF spectrum that addresses aforementioned issues and helps to significantly enhance the utilization of the RF spectrum,offer improved coverage and capacity of networks,enhance network security and reduce energy consumption.With wireless virtualization,wireless networks'physical substrate is shared and reconfigured dynamically between virtual wireless networks through Mobile Virtual Network Operations(MVNOs).Wireless virtualization with dynamic configurable features of Wireless Infrastructure Providers(WIPs),virtualized wireless networks are vulnerable to a multitude of attacks,including jamming attacks and eavesdropping attacks.This paper investigates a means of defense through the employment of coalition game theory when jammers try to degrade the signal quality of legitimate users,and eavesdroppers aim to reduce secrecy rates.Specifically,we consider a virtual wireless network where MVNO users'job is to improve their Signal to Interference plus Noise Ratio(SINR)while the jammers target to collectively enhance their Jammer Received Signal Strength(JRSS),and an eavesdropper's goal is to reduce the overall secrecy rate.Numerical results have demonstrated that the proposed game strategies are effective(in terms of data rate,secrecy rate and latency)against such attackers compared to the traditional approaches.展开更多
The IEEE 802.15.4a standard provides a framework for low-data-rate communication systems,typically sensor networks.In this paper,we established a realistic environment for the time delay characteristic of industrial n...The IEEE 802.15.4a standard provides a framework for low-data-rate communication systems,typically sensor networks.In this paper,we established a realistic environment for the time delay characteristic of industrial network based on IEEE 802.15.4a.Several sets of practical experiments are conducted to study its various features,including the effects of 1) numeral wireless nodes,2) numeral data packets,3) data transmissions with different upper-layer protocols,4) physical distance between nodes,and 5) adding and reducing the number of the wireless nodes.The results show that IEEE 802.15.4a is suitable for some industrial applications that have more relaxed throughput requirements and time-delay.Some issues that could degrade the network performance are also discussed.展开更多
Wireless network is the communication foundation that supports the intelligentization of Unmanned Aerial Vehicle(UAV) swarm. The topology of UAV communication network is the key to understanding and analyzing the beha...Wireless network is the communication foundation that supports the intelligentization of Unmanned Aerial Vehicle(UAV) swarm. The topology of UAV communication network is the key to understanding and analyzing the behavior of UAV swarm, thus supporting the further prediction of UAV operations. However, the UAV swarm network topology varies over time due to the high mobility and diversified mission requirements of UAVs. Therefore, it is important but challenging to research dynamic topology inference for tracking the topology changes of the UAV network,especially in non-cooperative manner. In this paper, we study the problem of inferring UAV swarm network topology based on external observations, and propose a dynamic topology inference method. First, we establish a sensing framework for acquiring the communication behavior of the target network over time. Then, we expand the multi-dimensional dynamic Hawkes process to model the communication event sequence in a dynamic wireless network. Finally, combining the sliding time window mechanism, the maximum weighted likelihood estimation is applied to inferring the network topology. Extensive simulation results demonstrate the effectiveness of the proposed method.展开更多
Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wi...Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.展开更多
文摘Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.
文摘In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimental results,namely,light intensity factor ∈ and α,to represent the light intensity coefficient and influence factor.The remaining energy consumption of mobile terminal equipment was measured respectively,the distance parameter from device to device,the maximum transmission energy consumption,and the correlation coefficient between environmental parameters and energy consumption parameters was analyzed.This paper discusses the impact of different topological structures on the environment,energy saving and emission reduction in the relatively flat terrain area,based on the planning scheme of parking area within the coverage range of base station signal,the transmission capability of vehicles as mobile device nodes within the coverage range of base station signal,and the signal coverage range of base station under different light intensity.As the distance between the base station and the vehicle mobile device node changes,the maximum transmission energy consumption of the mobile device node is obtained.Based on the above factors,the optimal performance optimization parking scheme and the optimal energy consumption optimization transmission scheme are obtained.
基金supported by the National Natural Science Foundation of China under Grants 92267108,62173322 and 61821005the Science and Technology Program of Liaoning Province under Grants 2023JH3/10200004 and 2022JH25/10100005.
文摘Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption.
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.
基金National Natural Science Foundation of China (10577005, 60532030)National Outstanding Youth Science Foundation of China (60625102)NSBS Program of Beijing University of Aeronau-tics and Astronautics, China (221235)
文摘This article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-to-send (RTS/CTS) dialogue on a common channel and flexibly opts for conflict-free traffic channels to carry out the data packet transmission on the basis of a new channel selection scheme. The acknowledgment (ACK) packet for the data packet transmission is sent back to the sender over another ...
基金The National High Technology Research and Development Program of China(863 Program)(No.2013AA013601)Prospective Research Project on Future Netw orks of Jiangsu Future Netw orks Innovation Institute(No.BY2013095-1-18)
文摘A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum independent sets (MISs) are obtained from a contention graph by the proposed approximation algorithm with low complexity. Then, a weighted contention graph is obtained using the number of contention vertices between two MISs as a weighted value. Links are allocated to channels by the weighted contention graph to minimize conflicts between independent sets. Finally, after channel allocation, each node allocates network interface cards (NICs) to links that are allocated channels according to the queue lengths of NICs. Simulations are conducted to evaluate the proposed algorithm. The results show that the proposed algorithm significantly improves the network throughput and decreases the end to end delay.
基金Supported by the Major State Basic Research Development Program of China(973 Program)(No.2013CB329005)the National Natural Science Foundation of China(No.61171094)+1 种基金the National Science & Technology Key Project(No.2011ZX03001-006-02.No.2011ZX03005004-03)the Key Project of Jiangsu Provincial Natural Science Foundation(No.BK2011027)
文摘It is a hot issue in communication research field to select the best network for Heterogeneous Wireless Networks(HWNs),and it is also a difficult problem to reduce the handoff number of vertical handoff.In order to solve this problem,the paper proposes a multiple attribute network selection algorithm based on Analytic Hierarchy Process(AHP)and synergetic theory.The algorithm applies synergetics to network selection,considering the candidate network as a compound system composed of multiple attribute subsystems,and combines the subsystem order degree with AHP weight to obtain entropy of the compound system,which is opposite the synergy degree of a network system.The greater the synergy degree,the better the network performance.The algorithm takes not only the coordination of objective attributes but also Quality of Service(QoS)requirements into consideration,ensuring that users select the network with overall good performance.The simulation results show that the proposed algorithm can effectively reduce the handoff number and provide uses with satisfactory QoS according to different services.
基金the National Natural Science Foundation of China (No.60573036).
文摘The core of network security is the risk assessment. In this letter,a risk assessment method is introduced to estimate the wireless network security. The method,which combines Analytic Hier-archy Process (AHP) method and fuzzy logical method,is applied to the risk assessment. Fuzzy logical method is applied to judge the important degree of each factor in the aspects of the probability,the influence and the uncontrollability,not to directly judge the important degree itself. The risk as-sessment is carved up 3 layers applying AHP method,the sort weight of the third layer is calculated by fuzzy logical method. Finally,the important degree is calculated by AHP method. By comparing the important degree of each factor,the risk which can be controlled by taking measures is known. The study of the case shows that the method can be easily used to the risk assessment of the wireless network security and its results conform to the actual situation.
基金National Outstanding Youth Founda-tion (No.60525303)National Natural Science Foundation of China(No.60404022,60704009)Natural Science Foundation of Hebei Province (No.F2005000390,F2006000270).
文摘In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.
基金Supported by the Science Foundation of Aeronau-tics (05F53029)Graduate Starting Seed Fund of NorthwesternPolytechnical University (Z200633)
文摘Wired equivalent security is difficult to provide in wireless networks due to high dynamics, wireless link vulnerability, and decentralization. The Elliptic Curve Digital Signature Algorithm(ECDSA) has been applied to wireless networks because of its low computational cost and short key size, which reduces the overheads in a wireless environment. This study improves the ECDSA scheme by reducing its time complexity. The significant advantage of the algorithm is that our new scheme needs not to calculate modular inverse operation in the phases of signature generation and signature verification. Such an improvement makes the proposed scheme more efficient and secure.
基金supported by the National Natural Science Foundation of China (60502046, 60573034)863 Foundation of China (2007AA01Z215)
文摘Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-complete problem, the available time-based retransmission scheme and its enhanced retransmission scheme have exponential computational complexity and thus are not scalable to large networks. In this paper, we present an efficient heuristic scheme based on hypergraph coloring and also its enhanced heuristic scheme to improve the transmission efficiency. Basically, our proposed schemes fi rst create a hypergraph according to the packet-loss matrix. Then our schemes solve the problem of generating XORed packets by coloring the edges of hypergraph. Extensive simulation results demonstrate that, the heuristic scheme based on hypergraph coloring and its enhanced scheme can achieve almost the same transmission efficiency as the available ones, but have much lower computational complexity, which is very important for the wireless devices without high computation capacity.
基金ACKNOWLEDGEMENT This work was supported by the National Na- tural Science Foundation of China under Gra- nts No. 61172079, 61231008, No. 61201141, No. 61301176 the National Basic Research Program of China (973 Program) under Grant No. 2009CB320404+2 种基金 the 111 Project under Gr- ant No. B08038 the National Science and Tec- hnology Major Project under Grant No. 2012- ZX03002009-003, No. 2012ZX03004002-003 and the Shaanxi Province Science and Techno- logy Research and Development Program un- der Grant No. 2011KJXX-40.
文摘The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.
基金supported by Science Fund for Distinguished Young Scholars of Hebei Province (No. F2011203110)Program for New Century Excellent Talents in the University of China (No. NCET-08-0658)+2 种基金National Natural Science Foundation of China (No. 60974018, No. 60934003)National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project for Natural Science Research of Hebei Education Department (No. ZD200908)
文摘In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.
基金supported by the University of New South Wales and the Australian Research Council under grant No.DP120102607
文摘As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of activity related to lo- cation-verification techniques in wireless networks. In particular, there has been a specific focus on intelligent transport systems because of the mission-critical nature of vehicle location verification. In this paper, we review recent research on wireless location verification related to vehicular networks. We focus on location verification systems that rely on for- mal mathematical classification frameworks and show how many systems are either partially or fully encompassed by such frameworks.
基金supported by the National Natural Science Foundation of China(6104000561001126+5 种基金61271262)the China Postdoctoral Science Foundation Funded Project(201104916382012T50789)the Natural Science Foundation of Shannxi Province of China(2011JQ8036)the Special Fund for Basic Scientific Research of Central Colleges (CHD2012ZD005)the Research Fund of Zhejiang University of Technology(20100244)
文摘Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.
基金supported in part by the National Natural Science Foundation of China under Grant 62001056, 61925101, U21A20444in part by the Fundamental Research Funds for the Central Universities under Grant 500421336 and Grant 505021163。
文摘With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource scheduling is not suitable for MWNs due to the special environment. In this paper,we introduce the collaborative relay communication in distributed MWNs to improve the link reliability, and propose an orthogonal time-frequency resource block reservation based multiple access(RRMA) scheme for both one-hop direct link and two-hop collaborative relay link to reduce the interference. To further improve the network performance, we formulate an energy efficiency(EE) maximization resource allocation problem and solve it by an iterative algorithm based on the Dinkelbach method. Finally, numerical results are provided to investigate the proposed RRMA scheme and resource allocation algorithm, showing that the low outage probability and transmission delay can be attained by the proposed RRMA scheme. Moreover,the proposed resource allocation algorithm is capable of achieving high EE in distributed MWNs.
基金This work was supported in part by the US NSF under grants CNS 1650831 and HRD 1828811by the U.S.Department of Homeland Security under grant DHS 2017-ST-062-000003by the DoE's National Nuclear Security Administration(NNSA)Award#DE-NA0003946.
文摘Dynamic spectrum sharing and cognitive radio networks were proposed to enhance the Radio Frequency(RF)spectrum utilization.However,there are several challenges to realize them in real systems,such as sensing uncertainty causing issues to licensed users,business models for licensed service providers.Wireless virtualization is regarded as a technology that leverages service level agreements to sublease unused or underutilized RF spectrum that addresses aforementioned issues and helps to significantly enhance the utilization of the RF spectrum,offer improved coverage and capacity of networks,enhance network security and reduce energy consumption.With wireless virtualization,wireless networks'physical substrate is shared and reconfigured dynamically between virtual wireless networks through Mobile Virtual Network Operations(MVNOs).Wireless virtualization with dynamic configurable features of Wireless Infrastructure Providers(WIPs),virtualized wireless networks are vulnerable to a multitude of attacks,including jamming attacks and eavesdropping attacks.This paper investigates a means of defense through the employment of coalition game theory when jammers try to degrade the signal quality of legitimate users,and eavesdroppers aim to reduce secrecy rates.Specifically,we consider a virtual wireless network where MVNO users'job is to improve their Signal to Interference plus Noise Ratio(SINR)while the jammers target to collectively enhance their Jammer Received Signal Strength(JRSS),and an eavesdropper's goal is to reduce the overall secrecy rate.Numerical results have demonstrated that the proposed game strategies are effective(in terms of data rate,secrecy rate and latency)against such attackers compared to the traditional approaches.
基金supported by National High Technology Research and Development Program of China (863 Program)(No. 2007AA04Z174,No. 2006AA04030405)National Natural Science Foundation of China (No. 61074032,No. 60834002)
文摘The IEEE 802.15.4a standard provides a framework for low-data-rate communication systems,typically sensor networks.In this paper,we established a realistic environment for the time delay characteristic of industrial network based on IEEE 802.15.4a.Several sets of practical experiments are conducted to study its various features,including the effects of 1) numeral wireless nodes,2) numeral data packets,3) data transmissions with different upper-layer protocols,4) physical distance between nodes,and 5) adding and reducing the number of the wireless nodes.The results show that IEEE 802.15.4a is suitable for some industrial applications that have more relaxed throughput requirements and time-delay.Some issues that could degrade the network performance are also discussed.
基金supported by the National Natural Science Foundation of China(Nos.U20B2038,61871398,61901520 and 61931011)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province,China(No.BK20190030)。
文摘Wireless network is the communication foundation that supports the intelligentization of Unmanned Aerial Vehicle(UAV) swarm. The topology of UAV communication network is the key to understanding and analyzing the behavior of UAV swarm, thus supporting the further prediction of UAV operations. However, the UAV swarm network topology varies over time due to the high mobility and diversified mission requirements of UAVs. Therefore, it is important but challenging to research dynamic topology inference for tracking the topology changes of the UAV network,especially in non-cooperative manner. In this paper, we study the problem of inferring UAV swarm network topology based on external observations, and propose a dynamic topology inference method. First, we establish a sensing framework for acquiring the communication behavior of the target network over time. Then, we expand the multi-dimensional dynamic Hawkes process to model the communication event sequence in a dynamic wireless network. Finally, combining the sliding time window mechanism, the maximum weighted likelihood estimation is applied to inferring the network topology. Extensive simulation results demonstrate the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(Nos.61771368 and 61671347)Young Elite Scientists Sponsorship Program by CAST(2016QNRC001)
文摘Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.