This research explores the design and implementation of an AI-driven Single Window system for international trade,aimed at enhancing data integration,risk assessment,and decision-making processes.The study focuses on ...This research explores the design and implementation of an AI-driven Single Window system for international trade,aimed at enhancing data integration,risk assessment,and decision-making processes.The study focuses on developing a modular,scalable architec-ture that integrates various AI technologies,including machine learning and natural lan-guage processing(NLP),to address inefficiencies in existing systems.The proposed system demonstrates improvements in customs clearance efficiency,risk detection accuracy,and supply chain management.Through detailed case studies,the effectiveness of the AI-driven Single Window system is evaluated,highlighting its impact on port management,interna-tional logistics,and overall trade facilitation.The findings suggest that the integration of AI into Single Window systems can lead to significant advancements in trade efficiency,transparency,and stakeholder collaboration.展开更多
This paper explores the role of Artificial Intelligence(AI)in enhancing trade facilitation through its integration with Single Window Systems(SWS).It investigates how AI tech-nologies such as machine learning,natural ...This paper explores the role of Artificial Intelligence(AI)in enhancing trade facilitation through its integration with Single Window Systems(SWS).It investigates how AI tech-nologies such as machine learning,natural language processing,and predictive analytics can improve the efficiency and effectiveness of trade processes.Case studies of Singapore and Australia are analyzed to highlight successful AI applications and key lessons learned.The study discusses the benefits,including increased efficiency,reduced costs,enhanced accuracy,and improved user experience,alongside the challenges posed by technical com-plexities,legal and ethical considerations,and resistance to change.The paper also pro-vides policy implications and recommendations for governments,international organiza-tions,and private sector stakeholders.Future research directions emphasize emerging AI technologies like AI-driven blockchain and advanced NLP,and their potential long-term impacts on global trade dynamics.展开更多
Isomorphism of the two-state system is heuristic in understanding the dynamical or statistical behavior of the simplest yet most quantum system that has no classical counterpart.We use the constraint phase space devel...Isomorphism of the two-state system is heuristic in understanding the dynamical or statistical behavior of the simplest yet most quantum system that has no classical counterpart.We use the constraint phase space developed in J.Chem.Phys.145,204105(2016);151,024105(2019);J.Phys.Chem.Lett.12,2496(2021),non-covariant phase space functions,time-dependent weight functions,and time-dependent normalization factors to construct a novel class of phase space representations of the exact population dynamics of the two-state quantum system.The equations of motion of the trajectory on constraint phase space are isomorphic to the time-dependent Schrödinger equation.The contribution of each trajectory to the integral expression for the population dynamics is always positive semi-definite.We also prove that the triangle window function approach,albeit proposed as a heuristic empirical model in J.Chem.Phys.145,144108(2016),is related to a special case of the novel class and leads to an isomorphic representation of the exact population dynamics of the two-state quantum system.展开更多
To ensure the safety of residents’lives and property by using automatic opening and closing of ordinary windows,this article designs an intelligent window automatic monitoring system.The article proposes a software a...To ensure the safety of residents’lives and property by using automatic opening and closing of ordinary windows,this article designs an intelligent window automatic monitoring system.The article proposes a software and hardware design scheme for the system,which comprises a microcontroller control module,temperature and humidity detection module,harmful gas detection module,rainfall detection module,human thermal radiation induction module,Organic Light-Emitting Diode(OLED)display module,stepper motor drive module,Wi-Fi communication module,etc.Users use this system to monitor environmental data such as temperature,humidity,rainfall,harmful gas concentrations,and human health.Users can control the opening and closing of windows through manual,microcontroller,and mobile application(app)remote methods,providing users with a more convenient,comfortable,and safe living environment.展开更多
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind...With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.展开更多
In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes u...In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.展开更多
Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories...Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories for several days after learning,and this process primarily occurs during sleep[1,2].The prevailing view suggests that sharp-wave ripples(SWRs)during non-rapid eye movement(NREM)sleep serve as key electrophysiological signatures of memory replay[3,4].However,only a small portion of SWRs contain memory replay[5].The direct relationship among SWRs,memory replay,and memory consolidation remains an open question.Another unresolved issue is how the hippocampus simultaneously reactivates both new and old memories while preventing interference.展开更多
Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally...Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally,approximately 15 million PTB cases are reported annually,posing a huge burden on individual families and the community economy[2].In the context of climate warming,O_(3) pollution has continuously increased in many countries in recent years,including China;therefore,scientific communities and government agencies must strive to mitigate ozone pollution.展开更多
With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant c...With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.展开更多
Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security...Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.展开更多
Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced...Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced in underwater environments where pollutants can impede the operation of these optical devices,significantly degrading or even compromising their optical properties.The glass catfish,known for its remarkable transparency in water,maintains surface cleanliness and clarity despite exposure to contaminants,impurities abrasion,and hydraulic pressure.Inspired by the glass catfish’s natural attributes,this study introduces a new solution named subaquatic abrasion-resistant and anti-fouling window(SAAW).Utilizing femtosecond laser ablation and electrodeposition,the SAAW is engineered by embedding fine metal bone structures into a transparent substrate and anti-fouling sliding layer,akin to the sturdy bones among catfish’s body.This approach significantly bolsters the window’s abrasion resistance and anti-fouling performance while maintaining high light transmittance.The sliding layer on the SAAW’s surface remarkably reduces the friction of various liquids,which is the reason that SAAW owns the great anti-fouling property.The SAAW demonstrates outstanding optical clarity even after enduring hundreds of sandpaper abrasions,attributing to the fine metal bone structures bearing all external forces and protecting the sliding layer of SAAW.Furthermore,it exhibits exceptional resistance to biological adhesion and underwater pressure.In a green algae environment,the window remains clean with minimal change in transmittance over one month.Moreover,it retains its wettability and anti-fouling properties when subjected to a depth of 30 m of underwater pressure for 30 d.Hence,the SAAW prepared by femtosecond laser ablation and electrodeposition presents a promising strategy for developing stable optical windows in liquid environments.展开更多
We demonstrate multiple transparency windows in a cavity opto-magnomechanical system containing a ferromagnetic material yttrium iron garnet(YIG)crystal.The probe output spectrum reveals the simultaneous emergence of ...We demonstrate multiple transparency windows in a cavity opto-magnomechanical system containing a ferromagnetic material yttrium iron garnet(YIG)crystal.The probe output spectrum reveals the simultaneous emergence of three distinct phenomena:magnon-induced transparency(MIT)arising from microwave–magnon coupling;magnomechanically induced transparency(MMIT)through phonon–magnon interaction,and optomechanically induced transparency(OMIT)mediated by optical cavity–photon coupling.Crucially,these transparency features demonstrate dynamic tunability through precise manipulation of the number of interacting modes and coupling strengths.Our study reveals the effects of magnon–microwave and optomechanical coupling on probe results and the role of quantum interference mechanisms in a resonant system.Moreover,the fast-slow light effect can be enhanced and switched by choosing appropriate coupling parameters.Our work has potential applications in multi-band quantum storage and multi-channel photonic information processing devices.展开更多
Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_...Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_(2)O molecules at the electrode-electrolyte interface tend to directly split under bias potential.Therefore,the composition and properties of the interfacial microenvironment are the crux for optimizing ESW.Herein,we developed a heterogel electrolyte with wide ESW(4.88 V)and satisfactory ionic conductivity(4.4 mS/cm)inspired by the bicontinuous architecture and surfactant self-assembly behavior in the ionic liquid microemulsion-based template.This electrolyte was capable of expanding the ESW through the dynamic oil/water/electrode interface ternary structure,which enriched the oil phase and assembled the hydrophobic surfactant tails at the interface to prevent H_(2)O molecules from approaching the electrode surface.Moreover,the surfactant Tween 20 and polymer network effectively suppressed the activity of H_(2)O molecules through H-bond interactions,which was beneficial in expanding the operating voltage range and improving the temperature tolerance.The prepared gel electrolyte demonstrated unparalleled adaptability in various aqueous lithium-based energy storage devices.Notably,the lithium-ion capacitor showed an extended operating voltage of 2.2 V and could provide a high power density of 1350.36 W/kg at an energy density of 6 Wh/kg.It maintained normal power output even in the challenging harsh environment,which enabled 11,000 uninterrupted charge-discharge cycles at 0℃.This work focuses on the regulation of the interfacial microdomain and the restriction of the degree of freedom of H_(2)O molecules to boost the ESW of aqueous electrolytes,providing a promising strategy for the advancement of energy storage technologies.展开更多
文摘This research explores the design and implementation of an AI-driven Single Window system for international trade,aimed at enhancing data integration,risk assessment,and decision-making processes.The study focuses on developing a modular,scalable architec-ture that integrates various AI technologies,including machine learning and natural lan-guage processing(NLP),to address inefficiencies in existing systems.The proposed system demonstrates improvements in customs clearance efficiency,risk detection accuracy,and supply chain management.Through detailed case studies,the effectiveness of the AI-driven Single Window system is evaluated,highlighting its impact on port management,interna-tional logistics,and overall trade facilitation.The findings suggest that the integration of AI into Single Window systems can lead to significant advancements in trade efficiency,transparency,and stakeholder collaboration.
文摘This paper explores the role of Artificial Intelligence(AI)in enhancing trade facilitation through its integration with Single Window Systems(SWS).It investigates how AI tech-nologies such as machine learning,natural language processing,and predictive analytics can improve the efficiency and effectiveness of trade processes.Case studies of Singapore and Australia are analyzed to highlight successful AI applications and key lessons learned.The study discusses the benefits,including increased efficiency,reduced costs,enhanced accuracy,and improved user experience,alongside the challenges posed by technical com-plexities,legal and ethical considerations,and resistance to change.The paper also pro-vides policy implications and recommendations for governments,international organiza-tions,and private sector stakeholders.Future research directions emphasize emerging AI technologies like AI-driven blockchain and advanced NLP,and their potential long-term impacts on global trade dynamics.
文摘Isomorphism of the two-state system is heuristic in understanding the dynamical or statistical behavior of the simplest yet most quantum system that has no classical counterpart.We use the constraint phase space developed in J.Chem.Phys.145,204105(2016);151,024105(2019);J.Phys.Chem.Lett.12,2496(2021),non-covariant phase space functions,time-dependent weight functions,and time-dependent normalization factors to construct a novel class of phase space representations of the exact population dynamics of the two-state quantum system.The equations of motion of the trajectory on constraint phase space are isomorphic to the time-dependent Schrödinger equation.The contribution of each trajectory to the integral expression for the population dynamics is always positive semi-definite.We also prove that the triangle window function approach,albeit proposed as a heuristic empirical model in J.Chem.Phys.145,144108(2016),is related to a special case of the novel class and leads to an isomorphic representation of the exact population dynamics of the two-state quantum system.
文摘To ensure the safety of residents’lives and property by using automatic opening and closing of ordinary windows,this article designs an intelligent window automatic monitoring system.The article proposes a software and hardware design scheme for the system,which comprises a microcontroller control module,temperature and humidity detection module,harmful gas detection module,rainfall detection module,human thermal radiation induction module,Organic Light-Emitting Diode(OLED)display module,stepper motor drive module,Wi-Fi communication module,etc.Users use this system to monitor environmental data such as temperature,humidity,rainfall,harmful gas concentrations,and human health.Users can control the opening and closing of windows through manual,microcontroller,and mobile application(app)remote methods,providing users with a more convenient,comfortable,and safe living environment.
文摘With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.
基金supported by the National Natural Science Foundation of China (No.62275193)。
文摘In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.
基金supported by the National Natural Science Foundation of China(32371028,32300822,U24A20373,and 82071177)the Shanghai Rising-Star Program(24QA2704800)+2 种基金the Shanghai Jiao Tong University 2030 InitiativeShanghai Municipal Health Commission(202340046)the Fund for Excellent Young Scholars of Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine.
文摘Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories for several days after learning,and this process primarily occurs during sleep[1,2].The prevailing view suggests that sharp-wave ripples(SWRs)during non-rapid eye movement(NREM)sleep serve as key electrophysiological signatures of memory replay[3,4].However,only a small portion of SWRs contain memory replay[5].The direct relationship among SWRs,memory replay,and memory consolidation remains an open question.Another unresolved issue is how the hippocampus simultaneously reactivates both new and old memories while preventing interference.
基金supported by the Natural Science Foundation of Henan Province[grant number:242300420115]Key Scientific Research Projects in Universities of Henan Province[grant number:23A330006].
文摘Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally,approximately 15 million PTB cases are reported annually,posing a huge burden on individual families and the community economy[2].In the context of climate warming,O_(3) pollution has continuously increased in many countries in recent years,including China;therefore,scientific communities and government agencies must strive to mitigate ozone pollution.
基金supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F020004in part by the National College Student Innovation and Research Training Program under Grant 202313283002.
文摘With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.
基金supported by the National Undergraduate Innovation and Entrepreneurship Training Program of China(Project No.202510559076)at Jinan University,a nationwide initiative administered by the Ministry of Educationthe National Natural Science Foundation of China(NSFC)under Grant No.62172189.
文摘Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.
基金supported by the National Science Foundation of China under Grant Nos(Nos.12127806,62175195)the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced in underwater environments where pollutants can impede the operation of these optical devices,significantly degrading or even compromising their optical properties.The glass catfish,known for its remarkable transparency in water,maintains surface cleanliness and clarity despite exposure to contaminants,impurities abrasion,and hydraulic pressure.Inspired by the glass catfish’s natural attributes,this study introduces a new solution named subaquatic abrasion-resistant and anti-fouling window(SAAW).Utilizing femtosecond laser ablation and electrodeposition,the SAAW is engineered by embedding fine metal bone structures into a transparent substrate and anti-fouling sliding layer,akin to the sturdy bones among catfish’s body.This approach significantly bolsters the window’s abrasion resistance and anti-fouling performance while maintaining high light transmittance.The sliding layer on the SAAW’s surface remarkably reduces the friction of various liquids,which is the reason that SAAW owns the great anti-fouling property.The SAAW demonstrates outstanding optical clarity even after enduring hundreds of sandpaper abrasions,attributing to the fine metal bone structures bearing all external forces and protecting the sliding layer of SAAW.Furthermore,it exhibits exceptional resistance to biological adhesion and underwater pressure.In a green algae environment,the window remains clean with minimal change in transmittance over one month.Moreover,it retains its wettability and anti-fouling properties when subjected to a depth of 30 m of underwater pressure for 30 d.Hence,the SAAW prepared by femtosecond laser ablation and electrodeposition presents a promising strategy for developing stable optical windows in liquid environments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071376,62405041,52175531,and 62005211)the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKJ2024KL504002)+1 种基金the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF202408)the Natural Science Foundation of Chongqing(Grant No.CSTB2024NSCQ-MSX0746)。
文摘We demonstrate multiple transparency windows in a cavity opto-magnomechanical system containing a ferromagnetic material yttrium iron garnet(YIG)crystal.The probe output spectrum reveals the simultaneous emergence of three distinct phenomena:magnon-induced transparency(MIT)arising from microwave–magnon coupling;magnomechanically induced transparency(MMIT)through phonon–magnon interaction,and optomechanically induced transparency(OMIT)mediated by optical cavity–photon coupling.Crucially,these transparency features demonstrate dynamic tunability through precise manipulation of the number of interacting modes and coupling strengths.Our study reveals the effects of magnon–microwave and optomechanical coupling on probe results and the role of quantum interference mechanisms in a resonant system.Moreover,the fast-slow light effect can be enhanced and switched by choosing appropriate coupling parameters.Our work has potential applications in multi-band quantum storage and multi-channel photonic information processing devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.22032003 and 22072073)。
文摘Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_(2)O molecules at the electrode-electrolyte interface tend to directly split under bias potential.Therefore,the composition and properties of the interfacial microenvironment are the crux for optimizing ESW.Herein,we developed a heterogel electrolyte with wide ESW(4.88 V)and satisfactory ionic conductivity(4.4 mS/cm)inspired by the bicontinuous architecture and surfactant self-assembly behavior in the ionic liquid microemulsion-based template.This electrolyte was capable of expanding the ESW through the dynamic oil/water/electrode interface ternary structure,which enriched the oil phase and assembled the hydrophobic surfactant tails at the interface to prevent H_(2)O molecules from approaching the electrode surface.Moreover,the surfactant Tween 20 and polymer network effectively suppressed the activity of H_(2)O molecules through H-bond interactions,which was beneficial in expanding the operating voltage range and improving the temperature tolerance.The prepared gel electrolyte demonstrated unparalleled adaptability in various aqueous lithium-based energy storage devices.Notably,the lithium-ion capacitor showed an extended operating voltage of 2.2 V and could provide a high power density of 1350.36 W/kg at an energy density of 6 Wh/kg.It maintained normal power output even in the challenging harsh environment,which enabled 11,000 uninterrupted charge-discharge cycles at 0℃.This work focuses on the regulation of the interfacial microdomain and the restriction of the degree of freedom of H_(2)O molecules to boost the ESW of aqueous electrolytes,providing a promising strategy for the advancement of energy storage technologies.