The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by f...The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by four wind-wave parameters that are wave age,wave steepness,windsea Reynolds number R B and R H ,and the analyzed data are divided into laboratory,field and combined data sets respectively.Comparison and analysis of dependence of C D on wind-wave parameters show that R B can fit the C D most appropriately.Wave age and wave steepness are not suitable to fit C D with a narrow range data set.When the value of wave age has a board range,R H is not suitable to fit C D either.Three relationships between C D and R B are integrated into the bulk algorithm COARE to calculate the observational friction velocity,and the results show that the relationship between C D and R B which is fitted with field data set can describe the momentum transfer in the open ocean,under low-moderate wind speed condition,most appropriately.展开更多
Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical applicati...Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically.展开更多
The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empi...The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empirical formulas for the growth of significant wave height and period. The main features of spectrum growth as specified by these parameters agree with those of the JONS-WAP experiments. For given wind speed and fetch, the high frequency parts beyond the peaks of shallow water spectra almost coincide with that of the corresponding deep water spectrum, whereas the low frequency parts differ appreciably. The method developed in this paper predicts smaller significant wave height as well as smaller wave period for shallow water spectra in contrast to the theoretical result of Kitaigorodskii ef al, in which the peak frequency, and consequently the significant wave period, remains basically unchanged for different water depths. Spectra are further reduced to a form in which only significant wave height and period are left as parameters, the peakness factor being replaced by the wave steepness through an empirical relation between them. Spectra in this form have been verified by observations.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale...The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.展开更多
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th...A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.展开更多
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve...To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the...In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.展开更多
Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parame...Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l...To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.展开更多
BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in th...BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in the pelvis,hips,and knees,the inverse relationship concerning knee pathology undergoing total knee arthroplasty(TKA)has been examined by a limited number of studies,yielding inconclusive results.AIM To generate evidence of the effect of TKA on the SSA from existing literature.METHODS Databases like PubMed,EMBASE,and Scopus were used to identify articles related to the“knee spine syndrome”phenomenon using a combination of subject terms and keywords such as“spinopelvic parameters”,“sagittal spinal balance”,and“total knee arthroplasty”were used with appropriate Boolean operators.Studies measuring the SSA following TKA were included,and research was conducted as per preferred reporting items for systematic review and metaanalysis guidelines.RESULTS A total of 475 participants had undergone TKA,and six studies measuring SSA were analysed.Following TKA,pelvic tilt was the only parameter that showed significant changes,while lumbar lordosis(LL),pelvic incidence,and sacral slope were non-significant,as evident from the forest plots.CONCLUSION The body's sagittal alignment is a complex balance between pelvic,spine,and lower extremity parameters.TKA,while having the potential to correct the flexion contracture,can also correct it.Still,the primary SSA for spinal pathology,i.e.,LL,may not be corrected in patients with co-existent spinal degenerative disease.展开更多
The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of...The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.展开更多
The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more...The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.展开更多
In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenario...In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenarios.To address these problems,a high-precision and high-efficiency indoor base station parameter calibration method based on laser measurement is proposed.We use a high-precision laser tracker to measure and determine the coordinate system transformation relationship,and further obtain the coordinates and attitude of the base station.In addition,we propose a simple calibration method based on point cloud fitting for specific scenes.Simulation results show that using common commercial laser trackers,we can achieve a coordinate correction accuracy of 1 cm and an angle correction accuracy of 0.25°,which is sufficient to meet the needs of wireless positioning.展开更多
The current investigation focuses on intertwined relationships of ecology and aquaculture for the benefit of farmers involved in fish farming practices.The study evaluated glucosinolate reduction in black,brown,and wh...The current investigation focuses on intertwined relationships of ecology and aquaculture for the benefit of farmers involved in fish farming practices.The study evaluated glucosinolate reduction in black,brown,and white mustard meals as fish feed ingredients for Indian Major Carps.Fish were fed with 10%mustard meal-supplemented diets in three forms:Raw(R),Anti-nutritional Rich(AR),and Anti-nutritional Lowered(AL),alongside a control group using floating feed.The three-month indoor experiment(September-November 2023)was conducted in FRP tanks with triplicate treatments.Blood analysis revealed compromised health in AR-fed carps,with reduced hemoglobin levels in rohu,catla and mrigal and elevated total leukocyte counts indicating inflammation in all the three carps studied here.Liver function was impaired in AR-fed fish,shown by increased alanine transaminase levels,highest in rohu followed by mrigal and catla.Histopathological examination of AR-fed carps liver tissue revealed necrotic spots,deformed hepatocytes,and significant vacuolation.In contrast,AL-fed fish demonstrated improved health parameters through Complete Blood Count analysis,liver function tests,and histo-pathological observations,suggesting successful reduction of anti-nutritional factors in the processed mustard meals.In near future,replacement of unprocessed seed meal with processed seed meal will lead to economic gains in fish farming.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars ref...The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.展开更多
基金The National Natural Science Foundation of China under Grant Nos 40675056 41076074National Key Basic Research Development Program under Grant No.2007CB411805the Basic Theory Foundation of Institute of Meteorology, PLA University of Science and Technology
文摘The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by four wind-wave parameters that are wave age,wave steepness,windsea Reynolds number R B and R H ,and the analyzed data are divided into laboratory,field and combined data sets respectively.Comparison and analysis of dependence of C D on wind-wave parameters show that R B can fit the C D most appropriately.Wave age and wave steepness are not suitable to fit C D with a narrow range data set.When the value of wave age has a board range,R H is not suitable to fit C D either.Three relationships between C D and R B are integrated into the bulk algorithm COARE to calculate the observational friction velocity,and the results show that the relationship between C D and R B which is fitted with field data set can describe the momentum transfer in the open ocean,under low-moderate wind speed condition,most appropriately.
文摘Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically.
文摘The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empirical formulas for the growth of significant wave height and period. The main features of spectrum growth as specified by these parameters agree with those of the JONS-WAP experiments. For given wind speed and fetch, the high frequency parts beyond the peaks of shallow water spectra almost coincide with that of the corresponding deep water spectrum, whereas the low frequency parts differ appreciably. The method developed in this paper predicts smaller significant wave height as well as smaller wave period for shallow water spectra in contrast to the theoretical result of Kitaigorodskii ef al, in which the peak frequency, and consequently the significant wave period, remains basically unchanged for different water depths. Spectra are further reduced to a form in which only significant wave height and period are left as parameters, the peakness factor being replaced by the wave steepness through an empirical relation between them. Spectra in this form have been verified by observations.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.
基金“High precision prestack reverse time depth migration imaging of long array seismic data in the East China Sea Shelf Basin”of the National Natural Science Foundation of China(No.42106207)“Seismic acquisition technology for deep strata under strong shielding layers in the sea and rugged seabed”of Laoshan Laboratory Science and Technology Innovation Project(No.LSKJ202203404)“Research on the compensation methods of the middledeep weak seismic reflections in the South Yellow Sea based on multi-resolution HHT time-frequency analysis”of the National Natural Science Foundation of China(No.42106208).
文摘The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.
基金The National Natural Science Foundation of China(No.52338011,52378291)Young Elite Scientists Sponsorship Program by CAST(No.2022-2024QNRC0101).
文摘To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
文摘In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.
文摘Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+1 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)。
文摘To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.
文摘BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in the pelvis,hips,and knees,the inverse relationship concerning knee pathology undergoing total knee arthroplasty(TKA)has been examined by a limited number of studies,yielding inconclusive results.AIM To generate evidence of the effect of TKA on the SSA from existing literature.METHODS Databases like PubMed,EMBASE,and Scopus were used to identify articles related to the“knee spine syndrome”phenomenon using a combination of subject terms and keywords such as“spinopelvic parameters”,“sagittal spinal balance”,and“total knee arthroplasty”were used with appropriate Boolean operators.Studies measuring the SSA following TKA were included,and research was conducted as per preferred reporting items for systematic review and metaanalysis guidelines.RESULTS A total of 475 participants had undergone TKA,and six studies measuring SSA were analysed.Following TKA,pelvic tilt was the only parameter that showed significant changes,while lumbar lordosis(LL),pelvic incidence,and sacral slope were non-significant,as evident from the forest plots.CONCLUSION The body's sagittal alignment is a complex balance between pelvic,spine,and lower extremity parameters.TKA,while having the potential to correct the flexion contracture,can also correct it.Still,the primary SSA for spinal pathology,i.e.,LL,may not be corrected in patients with co-existent spinal degenerative disease.
文摘The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.
基金National Natural Science Foundation of China(12102410)Fund of National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2022212005)。
文摘The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.
基金supported by the National Natural Science Foundation of China under Grant No.62471381the ZTE Industry-University-Institute Cooperation Funds.
文摘In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenarios.To address these problems,a high-precision and high-efficiency indoor base station parameter calibration method based on laser measurement is proposed.We use a high-precision laser tracker to measure and determine the coordinate system transformation relationship,and further obtain the coordinates and attitude of the base station.In addition,we propose a simple calibration method based on point cloud fitting for specific scenes.Simulation results show that using common commercial laser trackers,we can achieve a coordinate correction accuracy of 1 cm and an angle correction accuracy of 0.25°,which is sufficient to meet the needs of wireless positioning.
文摘The current investigation focuses on intertwined relationships of ecology and aquaculture for the benefit of farmers involved in fish farming practices.The study evaluated glucosinolate reduction in black,brown,and white mustard meals as fish feed ingredients for Indian Major Carps.Fish were fed with 10%mustard meal-supplemented diets in three forms:Raw(R),Anti-nutritional Rich(AR),and Anti-nutritional Lowered(AL),alongside a control group using floating feed.The three-month indoor experiment(September-November 2023)was conducted in FRP tanks with triplicate treatments.Blood analysis revealed compromised health in AR-fed carps,with reduced hemoglobin levels in rohu,catla and mrigal and elevated total leukocyte counts indicating inflammation in all the three carps studied here.Liver function was impaired in AR-fed fish,shown by increased alanine transaminase levels,highest in rohu followed by mrigal and catla.Histopathological examination of AR-fed carps liver tissue revealed necrotic spots,deformed hepatocytes,and significant vacuolation.In contrast,AL-fed fish demonstrated improved health parameters through Complete Blood Count analysis,liver function tests,and histo-pathological observations,suggesting successful reduction of anti-nutritional factors in the processed mustard meals.In near future,replacement of unprocessed seed meal with processed seed meal will lead to economic gains in fish farming.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
基金The National Natural Science Foundation of China under contract No. 42274159the Project supported by Key Laboratory of Space Ocean Remote Sensing and Application,MNR under contract No.2023CFO016。
文摘The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.