This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to charact...Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to characterize F-region currents using magnetic data from the MSS-1(Macao Science Satellite-1) and Swarm satellite missions.Our approach employs a toroidal field representation,utilizing spherical harmonics to capture spatial variations and Fourier series to represent temporal dynamics.Two models,Model-A and Model-B,derived from distinct datasets,are constructed to represent current patterns at altitudes of 450 km and 512 km,respectively.Our models successfully capture the primary spatial structures and seasonal variations of polar field-aligned currents.Additionally,they accurately reproduce the localized inter-hemispheric field-aligned currents observed in mid and low latitudes during solstices,particularly between 14:00 and 16:00 magnetic local times.These findings enhance our understanding of ionospheric F-region currents and contribute to more precise geomagnetic field modeling.展开更多
In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies...In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.展开更多
Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential ...Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, Bose–Einstein distribution populates magnon states across all energies from opposite eigenmodes, and hence the magnon spin current is largely compensated. Contrary to this common observation,here, we show that magnets with X-type AFM stacking, where opposite magnetic sublattices form orthogonal intersecting chains, support giant magnon spin currents with minimal compensation. Our model Hamiltonian calculations predict magnetic chain locking of magnon spin currents in these X-type magnets, significantly reducing their compensation ratio. In addition, the one-dimensional nature of the chain-like magnetic sublattices enhances magnon spin conductivities surpassing those of two-dimensional ferromagnets and canonical altermagnets. Notably, uncompensated X-type magnets, such as odd-layer antiferromagnets and ferrimagnets, can exhibit magnon spin currents polarized opposite to those expected by their net magnetization. These unprecedented properties of X-type magnets, combined with their inherent advantages resulting from AFM coupling, offer a promising new path for low-power high-performance spintronics.展开更多
Since the beginning of the 20th century,alkaline electrolysis has been used as a proven method for producing hydrogen on a megawatt scale.The existence of parasitic shunt currents in alkaline water electrolysis,which ...Since the beginning of the 20th century,alkaline electrolysis has been used as a proven method for producing hydrogen on a megawatt scale.The existence of parasitic shunt currents in alkaline water electrolysis,which is utilized to produce clean hydrogen,is investigated in this work.Analysis has been done on a 20-cell stack.Steel end plates,bipolar plates,and an electrolyte concentration of 6 M potassium hydroxide are all included in the model.The Butler-Volmer kinetics equations are used to simulate the electrode surfaces.Ohmic losses are taken into consideration in both the electrode and electrolyte phases,although mass transport constraints in the gas phase are not.Using an auxiliary sweep to solve equations,the model maintains an isothermal condition at 85℃ while adjusting the average cell voltage between 1.3 and 1.8 V.The results show that lower shunt currents in the outlet channels as opposed to the intake channels are the result of the electrolyte’s lower effective conductivity in the upper channels,which is brought on by a lower volume fraction of the electrolyte.Additionally,it has been seen that the shunt currents intensify as the stack gets closer to the conclusion.Efficiency is calculated by dividing the maximum energy output(per unit of time)that a fuel cell operating under comparable conditions might produce by the electrical energy needed to generate that output inside the stack.At first,energy efficiency increases due to the rise in coulombic efficiency,peaking around 1400 mA.The subsequent decline after reaching 1400 mA is linked to an increase in stack voltage at elevated current levels.展开更多
0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability...0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability(Harris,2020;Chubarenko et al.,2016).展开更多
Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into...Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.展开更多
Two-dimensional(2D)MoS_(2) is considered an excellent candidate material for nextgeneration photodetectors.However,the high dark current and low photocurrent in MoS_(2) devices severely hinder their practical applicat...Two-dimensional(2D)MoS_(2) is considered an excellent candidate material for nextgeneration photodetectors.However,the high dark current and low photocurrent in MoS_(2) devices severely hinder their practical application.Strategies for suppressing dark current and enhancing photocurrent should be explored.Herein,we propose a modification strategy for MoS_(2) by utilizing Ag_(70) nanoclusters(NCs)as electron reservoirs and photoabsorbers to suppress dark current and enhance the photocurrent of 2D MoS_(2) photodetector.Remarkably,the dark current is effectively suppressed by four orders of magnitude,while the photocurrent is enhanced by over tenfold upon modification with Ag_(70) NCs,compared to the pristine MoS_(2) photodetector.The reduction in dark current is attributed to charge transfer from MoS_(2) to Ag_(70) NCs owing to the strong electronwithdrawing property of Ag_(70) NCs.The increase in photocurrent benefits from enhanced optical absorption of the photodetector after Ag_(70) NCs modification and the subsequent injection of photoexcited electrons from Ag_(70) NCs to MoS_(2).Compared to isolated MoS_(2),the modulated photodetector shows exceptional improvements in several key figures of merit(such as responsivity,detectivity,external quantum efficiency,and photoswitching on/off ratio).This study opens up new avenues for building high-performance 2D MoS_(2) photodetectors.展开更多
Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and ...Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and tidal currents in the Beibu Gulf and Qiongzhou Strait are well reproduced.The model results show that the semidiurnal tidal wave propagates eastward from the Beibu Gulf through Qiongzhou Strait,while diurnal tidal waves enter the strait from both the eastern and western sides and interact on the southeast coast of the strait.The formation processes of the residual currents in Qiongzhou Strait in summer (August) and winter (January) are mainly discussed.It is shown that the total residual currents (coupling effect of wind,tide and density) in the strait are westward in both summer and winter.The water volume transported from the east to west into the Beibu Gulf is 0.026 Sv in summer and 0.116 Sv in winter.Numerical experiments indicate that the dominant factor affecting the residual currents in the strait is not the wind stress but the tidal rectification.The westward tide-induced residual current,driven by the tidal rectification,is rather strong in the strait with water volume transport of 0.063 Sv.The wind in summer only reduces the westward tide-induced residual current to a certain extent,and the wind in winter approximately doubles the westward tide-induced residual current through the strait.The density current contributes little to the total residual current in both summer and winter.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual curren...Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual current property in the area in observing dates. Then on the basis of observed data analysis and by employing the split-step method, the paper conducts a numerical simulation of the tidal current field, which can show the M2 tidal constituent tidal wave system, current ellipse distribution, maximum current velocity distribution and time-dependent current field. The calculated results agree well with the observed data, which can on the one hand reflect the basic specificities of temporal and spatial distribution of the M2 tidal constituent current field to some extent, and, on the other hand, offer more information about the hydrodynamic condition. So the paper would provide a scientific basis for the making of sea environment protection plans in the offshore area of Jiaonan under certain conditions.展开更多
The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, ...The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, a global weekly 0.5°×0.5°ocean surface current product was obtained over the period 2000 - 2008 by combining the geostrophic currents estimated from sea surface height with Ekman current estimated from the wind stress. Particularly, weight functions were introduced when calculating the Ekman currents to eliminate the discontinuity near 25°S and 25°N. These satellite-derived currents have been compared with TAO current meter and the SCUD product, respectively. The comparison showed that satellite-derived currents not only could capture the characteristics of ocean surface currents but also had high accuracy and reliability. The result showed that this innovatory method was effective.展开更多
The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observatio...The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.展开更多
Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our u...Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our understanding of tidal characteristics and residuals in this region. The tidal currents in Kemen Channel were identified as the regular semidiurnal and reversing tidal flows, with its behaviour more like standing waves. Moreover, the flood currents in the lower layers were found to be ahead of that in the upper layers and vice versa for ebb tides. The major of tidal ellipse for M2 constituent was found to be larger close to the southern side of the channel, with its incline also increasing toward the south. The signs of M4 constituent were also found mainly nearby the end points of this transect, indicating the importance of nonlinearity in tidal dynamics due to the shallower topography. A two-layer structure was found for the residual currents in Kemen Channel, flowing northeastwardly out of the Bay in upper 20m and southwestwardly into the bay in the lowers. Besides approximate 4.81×10^8 m^3 water exchanges were determined between the Luoyuan Bay and outer seas by the calculation of tidal flux through Kemen Channel.展开更多
A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, wher...A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, where valence band mixing is taken into account.By comparing to the experiments, the model is demonstrated to be applicable to both electron and hole tunneling c urrents in CMOS devices.The effect of the dispersion in oxide energy gap on the tunneling current is also studied.This model can be further extended to study th e direct tunneling current in future high-k materials.展开更多
The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the Nor...The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.展开更多
A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observatio...A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observations. The co-tidal maps of K1 , O1 , and M2 indicated that K1 and O1 were mostly standing waves outside the Lianzhou Bay, while M2 had a largely propagating character. However, all three constituents became propagating waves when entering the Lianzhou Bay, due to the shallow waters. The tidal current ellipses showed the characters of K1 , O1 , and M2 constituents: K1 and O1 were rotating outside the bay, but rectilinear along the water channels inside the bay; M2 was mostly rectilinear over the whole area. The tidal-induced residual current shows the flow was divided into two branches by the Guantouling Peninsula: one turned to flow west; the other was blocked by the southern boundary of the peninsula, creating a clockwise circulation. In Lianzhou Bay, there were two circulation systems, a cyclonic one at the top of the bay and an anti-cyclonic at the mouth.展开更多
The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transvers...The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transverse electric fields. It has been known as the unipolar field-effect transistor for 55-years since Shockley's 1952 invention,because the electron-current theory inevitably neglected the hole current from over-specified internal and boundary conditions, such as the electrical neutrality and the constant hole-electrochemical-potential, resulting in erroneous solutions of the internal and terminal electrical characteristics from the electron channel current alone, which are in gross error when the neglected hole current becomes comparable to the electron current, both in subthreshold and strong inversion. This report presents the general theory, that includes both electron and hole channels and currents. The rectangular ( x, y, z) parallelepiped transistors,uniform in the width direction (z-axis),with one or two MOS gates on thin and thick,and pure and impure base, are used to illustrate the two-dimensional effects and the correct internal and boundary conditions for the electric and the electron and hole electrochemical potentials. Complete analytical equations of the DC current-voltage characteristics of four common MOS transistor structures are derived without over-specification: the 1-gate on semi-infinite-thick impure-base (the traditional bulk transistor), the 1-gate on thin impure-silicon layer over oxide-insulated silicon bulk (SOI) ,the 1-gate on thin impure-silicon layer deposited on insulating glass (SOI TFT), and the 2-gates on thin pure-base (FinFETs).展开更多
The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly...The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金supported by the National Natural Science Foundation of China (42250101)the Macao Foundation. The computation made use of the high-performance computing resources at the center of the MSS data processing and analysis。
文摘Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to characterize F-region currents using magnetic data from the MSS-1(Macao Science Satellite-1) and Swarm satellite missions.Our approach employs a toroidal field representation,utilizing spherical harmonics to capture spatial variations and Fourier series to represent temporal dynamics.Two models,Model-A and Model-B,derived from distinct datasets,are constructed to represent current patterns at altitudes of 450 km and 512 km,respectively.Our models successfully capture the primary spatial structures and seasonal variations of polar field-aligned currents.Additionally,they accurately reproduce the localized inter-hemispheric field-aligned currents observed in mid and low latitudes during solstices,particularly between 14:00 and 16:00 magnetic local times.These findings enhance our understanding of ionospheric F-region currents and contribute to more precise geomagnetic field modeling.
文摘In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.
基金supported by the National Key R&D Program of China (Grant No.2022YFA1403203)the National Natural Science Funds for Distinguished Young Scholar (Grant No.52325105)+2 种基金the National Natural Science Foundation of China (Grant Nos.12274411,12241405,52250418,and12404185)the Basic Research Program of the Chinese Academy of Sciences (CAS) Based on Major Scientific Infrastructures (Grant No.JZHKYPT-2021-08)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)。
文摘Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, Bose–Einstein distribution populates magnon states across all energies from opposite eigenmodes, and hence the magnon spin current is largely compensated. Contrary to this common observation,here, we show that magnets with X-type AFM stacking, where opposite magnetic sublattices form orthogonal intersecting chains, support giant magnon spin currents with minimal compensation. Our model Hamiltonian calculations predict magnetic chain locking of magnon spin currents in these X-type magnets, significantly reducing their compensation ratio. In addition, the one-dimensional nature of the chain-like magnetic sublattices enhances magnon spin conductivities surpassing those of two-dimensional ferromagnets and canonical altermagnets. Notably, uncompensated X-type magnets, such as odd-layer antiferromagnets and ferrimagnets, can exhibit magnon spin currents polarized opposite to those expected by their net magnetization. These unprecedented properties of X-type magnets, combined with their inherent advantages resulting from AFM coupling, offer a promising new path for low-power high-performance spintronics.
文摘Since the beginning of the 20th century,alkaline electrolysis has been used as a proven method for producing hydrogen on a megawatt scale.The existence of parasitic shunt currents in alkaline water electrolysis,which is utilized to produce clean hydrogen,is investigated in this work.Analysis has been done on a 20-cell stack.Steel end plates,bipolar plates,and an electrolyte concentration of 6 M potassium hydroxide are all included in the model.The Butler-Volmer kinetics equations are used to simulate the electrode surfaces.Ohmic losses are taken into consideration in both the electrode and electrolyte phases,although mass transport constraints in the gas phase are not.Using an auxiliary sweep to solve equations,the model maintains an isothermal condition at 85℃ while adjusting the average cell voltage between 1.3 and 1.8 V.The results show that lower shunt currents in the outlet channels as opposed to the intake channels are the result of the electrolyte’s lower effective conductivity in the upper channels,which is brought on by a lower volume fraction of the electrolyte.Additionally,it has been seen that the shunt currents intensify as the stack gets closer to the conclusion.Efficiency is calculated by dividing the maximum energy output(per unit of time)that a fuel cell operating under comparable conditions might produce by the electrical energy needed to generate that output inside the stack.At first,energy efficiency increases due to the rise in coulombic efficiency,peaking around 1400 mA.The subsequent decline after reaching 1400 mA is linked to an increase in stack voltage at elevated current levels.
基金the National Natural Science Foundation of China(No.42277138)the National Key Research and Development Program of China(Nos.2024YFF0506803 and 2024YFC2815400)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.202441003 and 202513032)the Shandong Province National-Level Leading Talent Supporting Project(No.2022GJJLJRC-15)the European Commission(Nos.HORIZON MSCA-2024-PF-01,101200637)。
文摘0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability(Harris,2020;Chubarenko et al.,2016).
基金National Key Research and Development Program of China(2021YFB3700801)。
文摘Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.
基金supported by the National Natural Science Foundation of China(Nos.92461304 and 52202192)China Postdoctoral Science Foundation(Nos.2020M682338 and 2023T160593)+2 种基金China National Postdoctoral Program for Innovative Talents(No.BX20230329)Zhengzhou Universitythe support from the Center of New Materials and Device of Huazhong University of Science and Technology.
文摘Two-dimensional(2D)MoS_(2) is considered an excellent candidate material for nextgeneration photodetectors.However,the high dark current and low photocurrent in MoS_(2) devices severely hinder their practical application.Strategies for suppressing dark current and enhancing photocurrent should be explored.Herein,we propose a modification strategy for MoS_(2) by utilizing Ag_(70) nanoclusters(NCs)as electron reservoirs and photoabsorbers to suppress dark current and enhance the photocurrent of 2D MoS_(2) photodetector.Remarkably,the dark current is effectively suppressed by four orders of magnitude,while the photocurrent is enhanced by over tenfold upon modification with Ag_(70) NCs,compared to the pristine MoS_(2) photodetector.The reduction in dark current is attributed to charge transfer from MoS_(2) to Ag_(70) NCs owing to the strong electronwithdrawing property of Ag_(70) NCs.The increase in photocurrent benefits from enhanced optical absorption of the photodetector after Ag_(70) NCs modification and the subsequent injection of photoexcited electrons from Ag_(70) NCs to MoS_(2).Compared to isolated MoS_(2),the modulated photodetector shows exceptional improvements in several key figures of merit(such as responsivity,detectivity,external quantum efficiency,and photoswitching on/off ratio).This study opens up new avenues for building high-performance 2D MoS_(2) photodetectors.
基金Supported by the National Basic Research Program (973 Program) (No.2007CB411807)the Open Research Program of the CAS Key Laboratory of Tropical Marine Environmental Dynamics (No.LED0404)+1 种基金the Key Project of Chinese Ministry of Education (No.108159)the National Key Technologies R&D Program (No.2007BAC03A06),China
文摘Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and tidal currents in the Beibu Gulf and Qiongzhou Strait are well reproduced.The model results show that the semidiurnal tidal wave propagates eastward from the Beibu Gulf through Qiongzhou Strait,while diurnal tidal waves enter the strait from both the eastern and western sides and interact on the southeast coast of the strait.The formation processes of the residual currents in Qiongzhou Strait in summer (August) and winter (January) are mainly discussed.It is shown that the total residual currents (coupling effect of wind,tide and density) in the strait are westward in both summer and winter.The water volume transported from the east to west into the Beibu Gulf is 0.026 Sv in summer and 0.116 Sv in winter.Numerical experiments indicate that the dominant factor affecting the residual currents in the strait is not the wind stress but the tidal rectification.The westward tide-induced residual current,driven by the tidal rectification,is rather strong in the strait with water volume transport of 0.063 Sv.The wind in summer only reduces the westward tide-induced residual current to a certain extent,and the wind in winter approximately doubles the westward tide-induced residual current through the strait.The density current contributes little to the total residual current in both summer and winter.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
文摘Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual current property in the area in observing dates. Then on the basis of observed data analysis and by employing the split-step method, the paper conducts a numerical simulation of the tidal current field, which can show the M2 tidal constituent tidal wave system, current ellipse distribution, maximum current velocity distribution and time-dependent current field. The calculated results agree well with the observed data, which can on the one hand reflect the basic specificities of temporal and spatial distribution of the M2 tidal constituent current field to some extent, and, on the other hand, offer more information about the hydrodynamic condition. So the paper would provide a scientific basis for the making of sea environment protection plans in the offshore area of Jiaonan under certain conditions.
基金supported by the National Natural Science Foundation of China(No.41306010,41276088 and 41206002)
文摘The ocean surface currents are reconstructed from the satellite remote sensing data containing altimeter-derived sea surface height and QuikSCAT satellite-derived wind data. Based on the method proposed by Lagerloef, a global weekly 0.5°×0.5°ocean surface current product was obtained over the period 2000 - 2008 by combining the geostrophic currents estimated from sea surface height with Ekman current estimated from the wind stress. Particularly, weight functions were introduced when calculating the Ekman currents to eliminate the discontinuity near 25°S and 25°N. These satellite-derived currents have been compared with TAO current meter and the SCUD product, respectively. The comparison showed that satellite-derived currents not only could capture the characteristics of ocean surface currents but also had high accuracy and reliability. The result showed that this innovatory method was effective.
文摘The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.
文摘Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our understanding of tidal characteristics and residuals in this region. The tidal currents in Kemen Channel were identified as the regular semidiurnal and reversing tidal flows, with its behaviour more like standing waves. Moreover, the flood currents in the lower layers were found to be ahead of that in the upper layers and vice versa for ebb tides. The major of tidal ellipse for M2 constituent was found to be larger close to the southern side of the channel, with its incline also increasing toward the south. The signs of M4 constituent were also found mainly nearby the end points of this transect, indicating the importance of nonlinearity in tidal dynamics due to the shallower topography. A two-layer structure was found for the residual currents in Kemen Channel, flowing northeastwardly out of the Bay in upper 20m and southwestwardly into the bay in the lowers. Besides approximate 4.81×10^8 m^3 water exchanges were determined between the Luoyuan Bay and outer seas by the calculation of tidal flux through Kemen Channel.
文摘A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, where valence band mixing is taken into account.By comparing to the experiments, the model is demonstrated to be applicable to both electron and hole tunneling c urrents in CMOS devices.The effect of the dispersion in oxide energy gap on the tunneling current is also studied.This model can be further extended to study th e direct tunneling current in future high-k materials.
文摘The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.
基金supported by the special fund for the Ocean Public Welfare Scientific Research Project, State Oceanic Administration, People's Republic of China(Grant No. 200805065)
文摘A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observations. The co-tidal maps of K1 , O1 , and M2 indicated that K1 and O1 were mostly standing waves outside the Lianzhou Bay, while M2 had a largely propagating character. However, all three constituents became propagating waves when entering the Lianzhou Bay, due to the shallow waters. The tidal current ellipses showed the characters of K1 , O1 , and M2 constituents: K1 and O1 were rotating outside the bay, but rectilinear along the water channels inside the bay; M2 was mostly rectilinear over the whole area. The tidal-induced residual current shows the flow was divided into two branches by the Guantouling Peninsula: one turned to flow west; the other was blocked by the southern boundary of the peninsula, creating a clockwise circulation. In Lianzhou Bay, there were two circulation systems, a cyclonic one at the top of the bay and an anti-cyclonic at the mouth.
文摘The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transverse electric fields. It has been known as the unipolar field-effect transistor for 55-years since Shockley's 1952 invention,because the electron-current theory inevitably neglected the hole current from over-specified internal and boundary conditions, such as the electrical neutrality and the constant hole-electrochemical-potential, resulting in erroneous solutions of the internal and terminal electrical characteristics from the electron channel current alone, which are in gross error when the neglected hole current becomes comparable to the electron current, both in subthreshold and strong inversion. This report presents the general theory, that includes both electron and hole channels and currents. The rectangular ( x, y, z) parallelepiped transistors,uniform in the width direction (z-axis),with one or two MOS gates on thin and thick,and pure and impure base, are used to illustrate the two-dimensional effects and the correct internal and boundary conditions for the electric and the electron and hole electrochemical potentials. Complete analytical equations of the DC current-voltage characteristics of four common MOS transistor structures are derived without over-specification: the 1-gate on semi-infinite-thick impure-base (the traditional bulk transistor), the 1-gate on thin impure-silicon layer over oxide-insulated silicon bulk (SOI) ,the 1-gate on thin impure-silicon layer deposited on insulating glass (SOI TFT), and the 2-gates on thin pure-base (FinFETs).
基金This study was supported by the Youth Ocean Sience Funds of State Oceanic Administration under contract No. 97301.
文摘The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.