期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
Relative-Density-Viewpoint-Based Weighted Kernel Fuzzy Clustering
1
作者 Yuhan Xia Xu Li +2 位作者 Ye Liu Wenbo Zhou Yiming Tang 《Computers, Materials & Continua》 2025年第7期625-651,共27页
Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as ini... Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as initialization sensitivity and information granule weight optimization.Therefore,we propose a weighted kernel fuzzy clustering algorithm based on a relative density view(RDVWKFC).Compared with the traditional density-based methods,RDVWKFC can capture the intrinsic structure of the data more accurately,thus improving the initial quality of the clustering.By introducing a Relative Density based Knowledge Extraction Method(RDKM)and adaptive weight optimization mechanism,we effectively solve the limitations of view initialization and information granule weight optimization.RDKM can accurately identify high-density regions and optimize the initialization process.The adaptive weight mechanism can reduce noise and outliers’interference in the initial cluster centre selection by dynamically allocating weights.Experimental results on 14 benchmark datasets show that the proposed algorithm is superior to the existing algorithms in terms of clustering accuracy,stability,and convergence speed.It shows adaptability and robustness,especially when dealing with different data distributions and noise interference.Moreover,RDVWKFC can also show significant advantages when dealing with data with complex structures and high-dimensional features.These advancements provide versatile tools for real-world applications such as bioinformatics,image segmentation,and anomaly detection. 展开更多
关键词 fuzzy clustering fuzzy c-means feature weighting information granule
在线阅读 下载PDF
A weighted fuzzy C-means clustering method for hardness prediction
2
作者 Yuan Liu Shi-zhong Wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第1期176-191,共16页
The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for d... The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for data clustering using improved Mahalanobis distance based on random forest importance values,which could play a full role of important features and avoid clustering center overlap.The samples were divided into two classes.The top 10 features of each class were selected to form two feature subsets for better performance of the model.The dimension and dispersion of features decreased in such feature subsets.Comparing four machine learning algorithms,SVR had the best performance and was chosen to modeling.The hyper-parameters of the SVR model were optimized by particle swarm optimization.The samples in validation set were classified according to minimum distance of sample to clustering centers,and then the SVR model trained by feature subset of corresponding class was used for prediction.Compared with the feature subset of original data set,the predicted values of model trained by feature subsets of classified samples by WFCM had higher correlation coefficient and lower root mean square error.It indicated that WFCM was an effective method to reduce the dispersion of features and improve the accuracy of model. 展开更多
关键词 Hardness prediction weighted fuzzy c-means algorithm Feature selection Particle swarm optimization Support vector regression Dispersion reduction
原文传递
A Fixed Suppressed Rate Selection Method for Suppressed Fuzzy C-Means Clustering Algorithm 被引量:2
3
作者 Jiulun Fan Jing Li 《Applied Mathematics》 2014年第8期1275-1283,共9页
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorit... Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm. 展开更多
关键词 HARD c-means CLUSTERING algorithm fuzzy c-means CLUSTERING algorithm Suppressed fuzzy c-means CLUSTERING algorithm Suppressed RATE
在线阅读 下载PDF
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm 被引量:2
4
作者 毛力 宋益春 +2 位作者 李引 杨弘 肖炜 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期51-55,共5页
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC... For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly. 展开更多
关键词 fuzzy c-means(FCM) particle swarm optimization(PSO) clustering algorithm new metric norm
原文传递
Advanced Fuzzy C-Means Algorithm Based on Local Density and Distance 被引量:1
5
作者 Shaochun PANG Yijie +1 位作者 SHAO Sen JIANG Keyuan 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期636-642,共7页
This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of ... This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%. 展开更多
关键词 objective function clustering center fuzzy c-means (FCM) clustering algorithm degree of member-ship
原文传递
Hybrid Clustering Using Firefly Optimization and Fuzzy C-Means Algorithm
6
作者 Krishnamoorthi Murugasamy Kalamani Murugasamy 《Circuits and Systems》 2016年第9期2339-2348,共10页
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis... Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm. 展开更多
关键词 CLUSTERING OPTIMIZATION K-MEANS fuzzy c-means Firefly algorithm F-Firefly
在线阅读 下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
7
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy c-means shadowed sets shadowed c-means feature weights cluster validity index
在线阅读 下载PDF
空间加权距离的GIS数据Fuzzy C-means聚类方法与应用分析 被引量:3
8
作者 王海起 张腾 +1 位作者 彭佳琦 董倩楠 《地球信息科学学报》 CSCD 北大核心 2013年第6期854-861,共8页
Fuzzy c-means聚类常采用普通欧式距离进行相似性度量,对于地理空间对象来说,聚类不仅应考虑属性特征的相似性,还应考虑对象的空间邻近性。本文基于普通欧式距离提出了多种形式的空间加权距离公式,不同的距离公式分别在两个坐标方向、... Fuzzy c-means聚类常采用普通欧式距离进行相似性度量,对于地理空间对象来说,聚类不仅应考虑属性特征的相似性,还应考虑对象的空间邻近性。本文基于普通欧式距离提出了多种形式的空间加权距离公式,不同的距离公式分别在两个坐标方向、各属性上进行加权,权重向量既可以度量空间位置特征、属性特征的作用大小,也可度量位置距离在X、Y空间方向上的各向同性或异性程度。权重向量的获取以空间对象相似性的模糊函数为评价目标,通过动态学习率的梯度下降算法优化计算,并将空间加权距离引入到fuzzy c-means聚类算法中以取代普通欧式距离。本文以空间数据集Meuse为应用实例,分别采用不同形式的空间加权距离进行FCM模糊聚类,类数取为2-10类,通过PC、PE和Xie-Beni等聚类有效性指标的比较表明:空间加权距离的聚类效果要优于普通距离,且在空间数据聚类分析中,除属性信息外位置等空间特征信息同样起到了重要作用。 展开更多
关键词 空间加权距离 GIS数据 fuzzyC—means聚类 梯度下降学习算法
原文传递
Residual-driven Fuzzy C-Means Clustering for Image Segmentation 被引量:12
9
作者 Cong Wang Witold Pedrycz +1 位作者 ZhiWu Li MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期876-889,共14页
In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate ... In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate in clustering.We propose a residual-driven FCM framework by integrating into FCM a residual-related regularization term derived from the distribution characteristic of different types of noise.Built on this framework,a weighted?2-norm regularization term is presented by weighting mixed noise distribution,thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise.Besides,with the constraint of spatial information,the residual estimation becomes more reliable than that only considering an observed image itself.Supporting experiments on synthetic,medical,and real-world images are conducted.The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over its peers. 展开更多
关键词 fuzzy c-means image segmentation mixed or unknown noise residual-driven weighted regularization
在线阅读 下载PDF
Fault Diagnosis Model Based on Fuzzy Support Vector Machine Combined with Weighted Fuzzy Clustering 被引量:3
10
作者 张俊红 马文朋 +1 位作者 马梁 何振鹏 《Transactions of Tianjin University》 EI CAS 2013年第3期174-181,共8页
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ... A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization. 展开更多
关键词 fuzzy support VECTOR machine fuzzy clustering SAMPLE weight GENETIC algorithm parameter optimization FAULT diagnosis
在线阅读 下载PDF
A novel fuzzy inference method for urban incomplete road weight assignment
11
作者 Longhao Wang Xiaoping Rui 《Geo-Spatial Information Science》 CSCD 2024年第6期2008-2022,共15页
One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are comm... One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are commonly used in obtaining real-time traffic information.However,the information obtained by taxi-GPS does not cover the entire road network.Aiming at incomplete traffic information on urban roads,this paper proposes a novel fuzzy inference method.It considers the combined effect of road grade,traffic information,and other spatial factors.Taking the third law of geography as the basic premise,that is,the more similar the geographical environment,the more similar the characteristics of the geographical target will be.This method uses a Typical Link Pattern(TLP)model to describe the geographical environment.The TLP represents typical road sections with complete information.Then,it determines the relationship between roads lacking traffic information and the TLPs according to their related factors.After obtaining the TLPs,this method ascertains the weight of road links by calculating their similarities with TLPs based on the theory of fuzzy inference.Aiming at road links at different places,the dividing-conquering strategy and globe algorithm are also introduced to calculate the weight.These two strategies are used to address the excessively fragmented or lengthy links.The experimental results with the case of Newcastle show robustness in that the average Root Mean Square Error(RMSE)is 1.430 mph,and the bias is 0.2%;the overall RMSE is 11.067 mph,and the bias is 0.6%.This article is the first to combine the third law of geography with fuzzy inference,which significantly improves the estimation accuracy of road weights with incomplete information.Empirical application and validation show that the method can accurately predict vehicle speed under incomplete information. 展开更多
关键词 weight assignment path planning algorithm fuzzy inference road network
原文传递
Agent Based Segmentation of the MRI Brain Using a Robust C-Means Algorithm
12
作者 Hanane Barrah Abdeljabbar Cherkaoui Driss Sarsri 《Journal of Computer and Communications》 2016年第10期13-21,共9页
In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many research... In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints. 展开更多
关键词 Agents and MAS MR Images fuzzy Clustering c-means algorithm Image Segmentation
在线阅读 下载PDF
Intelligent diagnosis of the solder bumps defects using fuzzy C-means algorithm with the weighted coefficients 被引量:2
13
作者 LU XiangNing SHI TieLin +3 位作者 WANG SuYa LI Li Yi SU Lei LIAO GuangLan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第10期1689-1695,共7页
Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are... Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are hidden in the package. A nondestructive method using the transient active thermography has been proposed to inspect the defects of a solder bump, and we aim at developing an intelligent diagnosis system to eliminate the influence of emissivity unevenness and non-uniform heating on defects recognition in active infrared testing. An improved fuzzy c-means(FCM) algorithm based on the entropy weights is investigated in this paper. The captured thermograms are preprocessed to enhance the thermal contrast between the defective and good bumps. Hot spots corresponding to 16 solder bumps are segmented from the thermal images. The statistical features are calculated and selected appropriately to characterize the status of solder bumps in FCM clustering. The missing bump is identified in the FCM result, which is also validated by the principle component analysis. The intelligent diagnosis system using FCM algorithm with the entropy weights is effective for defects recognition in electronic packages. 展开更多
关键词 solder bump fuzzy c-means clustering feature weighting principal component analysis
原文传递
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
14
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) fuzzy set theory Unsupervised classification Image quantization Image enhancement fuzzy c-means (FCM) clustering algorithm Membership function
在线阅读 下载PDF
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
15
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFCM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
Alternative Fuzzy Cluster Segmentation of Remote Sensing Images Based on Adaptive Genetic Algorithm 被引量:1
16
作者 WANG Jing TANG Jilong +3 位作者 LIU Jibin REN Chunying LIU Xiangnan FENG Jiang 《Chinese Geographical Science》 SCIE CSCD 2009年第1期83-88,共6页
Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich textur... Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM. 展开更多
关键词 Adaptive Genetic algorithm (AGA) Alternative fuzzy c-means (AFCM) image segmentation remote sensing
在线阅读 下载PDF
Fuzzy Fruit Fly Optimized Node Quality-Based Clustering Algorithm for Network Load Balancing
17
作者 P.Rahul N.Kanthimathi +1 位作者 B.Kaarthick M.Leeban Moses 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1583-1600,共18页
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th... Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc. 展开更多
关键词 Ad-hoc load balancing H-MANET fuzzy logic system genetic algorithm node quality-based clustering algorithm improved weighted clustering fruitfly optimization
在线阅读 下载PDF
基于分段评价遗传算法的移动机器人路径规划
18
作者 谢嘉 孙帅浩 +3 位作者 李永国 梁锦涛 金昌兵 陈学飞 《传感技术学报》 北大核心 2025年第6期1064-1071,共8页
针对传统遗传算法在处理路径规划问题时存在适应性差、收敛速度慢和易早熟等问题,提出一种基于分段评价路径的改进遗传算法。设计一种动态权重适应度函数,在线调节参数并考虑坡度因素,来增强算法对复杂环境的适应能力;提出一种新的交叉... 针对传统遗传算法在处理路径规划问题时存在适应性差、收敛速度慢和易早熟等问题,提出一种基于分段评价路径的改进遗传算法。设计一种动态权重适应度函数,在线调节参数并考虑坡度因素,来增强算法对复杂环境的适应能力;提出一种新的交叉变异方式,分段评价个体后进行有选择性的交叉和变异,提升算法的寻优能力,加快收敛速度;采用模糊控制在线调节交叉变异概率,避免算法早熟;引入删除算子剔除冗余节点,提高最优解的平滑性;在20×20和30×30地图环境上进行仿真实验,结果表明所提算法具有更强的适应能力,改进型交叉变异能更快地搜索到更优路径,在线调节交叉变异概率很好地避免了算法早熟,最终解在路径长度、收敛速度及平滑度上均有提升。 展开更多
关键词 路径规划 分段评价路径 改进遗传算法 动态权重适应度函数 选择性交叉变异 模糊控制
在线阅读 下载PDF
基于属性权重的Fuzzy C Mean算法 被引量:46
19
作者 王丽娟 关守义 +1 位作者 王晓龙 王熙照 《计算机学报》 EI CSCD 北大核心 2006年第10期1797-1803,共7页
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC... 提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论. 展开更多
关键词 梯度递减算法 fuzzy C Mean算法 属性权重学习算法 聚类有效性函数
在线阅读 下载PDF
An Approach to Unsupervised Character Classification Based on Similarity Measure in Fuzzy Model
20
作者 卢达 钱忆平 +1 位作者 谢铭培 浦炜 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期370-376,共7页
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ... This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre... 展开更多
关键词 fuzzy model weighted fuzzy similarity measure unsupervised character classification matching algorithm classification hierarchy
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部