期刊文献+
共找到529篇文章
< 1 2 27 >
每页显示 20 50 100
Research on runoff variations based on wavelet analysis and wavelet neural network model: A case study of the Heihe River drainage basin (1944-2005) 被引量:6
1
作者 WANG Jun MENG Jijun 《Journal of Geographical Sciences》 SCIE CSCD 2007年第3期327-338,共12页
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin... The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin. 展开更多
关键词 annual runoff variations wavelet analysis wavelet neural network model GIS spatial analysis HeiheRiver drainage basin
在线阅读 下载PDF
Wavelet Neural Network Based on NARMA-L2 Model for Prediction of Thermal Characteristics in a Feed System 被引量:9
2
作者 JIN Chao WU Bo HU Youmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期33-41,共9页
Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the ... Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the temperature of critical machine elements irrespective of the operating conditions. But recent researches show that different sets of operating parameters generated significantly different error values even though the temperature of the machine elements generated was similar. As such, it is important to develop a generic thermal error model which is capable of evaluating the positioning error induced by different operating parameters. This paper ultimately aims at the development of a comprehensive prediction model that can predict the thermal characteristics under different operating conditions (feeding speed, load and preload of ballscrew) in a feed system. A novel wavelet neural network based on feedback linearization autoregressive moving averaging (NARMA-L2) model is introduced to predict the temperature rise of sensitive points and thermal positioning errors considering the different operating conditions as the model inputs. Particle swarm optimization(PSO) algorithm is brought in as the training method. According to ISO230-2 Positioning Accuracy Measurement and ISO230-3 Thermal Effect Evaluation standards, experiments under different operating conditions were carried out on a self-made quasi high-speed feed system experimental bench HUST-FS-001 by using Pt100 as temperature sensor, and the positioning errors were measured by Heidenhain linear grating scale. The experiment results show that the recommended method can be used to predict temperature rise of sensitive points and thermal positioning errors with good accuracy. The work described in this paper lays a solid foundation of thermal error prediction and compensation in a feed system based on varying operating conditions and machine tool characteristics. 展开更多
关键词 wavelet neural network NARMA-L2 model particle swarm optimization thermal positioning error feed system
在线阅读 下载PDF
Network traffic prediction by a wavelet-based combined model 被引量:1
3
作者 孙韩林 金跃辉 +1 位作者 崔毅东 程时端 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4760-4768,共9页
Network traffic prediction models can be grouped into two types, single models and combined ones. Combined models integrate several single models and thus can improve prediction accuracy. Based on wavelet transform, g... Network traffic prediction models can be grouped into two types, single models and combined ones. Combined models integrate several single models and thus can improve prediction accuracy. Based on wavelet transform, grey theory, and chaos theory, this paper proposes a novel combined model, wavelet-grey-chaos (WGC), for network traffic prediction. In the WGC model, we develop a time series decomposition method without the boundary problem by modifying the standard à trous algorithm, decompose the network traffic into two parts, the residual part and the burst part to alleviate the accumulated error problem, and employ the grey model GM(1,1) and chaos model to predict the residual part and the burst part respectively. Simulation results on real network traffic show that the WGC model does improve prediction accuracy. 展开更多
关键词 network traffic prediction wavelet transform grey model chaos model
原文传递
A Wavelet Neural Network Based Non-linear Model Predictive Controller for a Multi-variable Coupled Tank System 被引量:4
4
作者 Kayode Owa Sanjay Sharma Robert Sutton 《International Journal of Automation and computing》 EI CSCD 2015年第2期156-170,共15页
In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applicati... In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input multi-output(MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings,interactions in-between the process input-output variables and generally have an complex internal structure. The aim of this paper is to design, simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system techniques. There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO case. The first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped in a local minimum solution. The second is the online real time optimisation(RTO) of the manipulated variable at every sampling time.A novel wavelet neural network(WNN) with high predicting precision and time-frequency localisation characteristic was selected for an MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the WNN is more robust during abnormal operating conditions. 展开更多
关键词 wavelet neural network(WNN) non-linear model predictive control(NMPC) real time practical implementation multi-input multi-outpu
原文传递
Prediction of Al(OH)_3 fluidized roasting temperature based on wavelet neural network 被引量:1
5
作者 李劼 刘代飞 +2 位作者 戴学儒 邹忠 丁凤其 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第5期1052-1056,共5页
The recycle fluidization roasting in alumina production was studied and a temperature forecast model was established based on wavelet neural network that had a momentum item and an adjustable learning rate. By analyzi... The recycle fluidization roasting in alumina production was studied and a temperature forecast model was established based on wavelet neural network that had a momentum item and an adjustable learning rate. By analyzing the roasting process, coal gas flux, aluminium hydroxide feeding and oxygen content were ascertained as the main parameters for the forecast model. The order and delay time of each parameter in the model were deduced by F test method. With 400 groups of sample data (sampled with the period of 1.5 min) for its training, a wavelet neural network model was acquired that had a structure of {7 211}, i.e., seven nodes in the input layer, twenty-one nodes in the hidden layer and one node in the output layer. Testing on the prediction accuracy of the model shows that as the absolute error ±5.0 ℃ is adopted, the single-step prediction accuracy can achieve 90% and within 6 steps the multi-step forecast result of model for temperature is receivable. 展开更多
关键词 子波 神经网络 氢氧化铝 硫化煅烧
在线阅读 下载PDF
Self-Constructing Neural Network Modeling and Control of an AGV
6
作者 Jafar Keighobadi Khadijeh Alioghli Fazeli Mohammad Sadeghi Shahidi 《Positioning》 2013年第2期160-168,共9页
Tracking precision of pre-planned trajectories is essential for an auto-guided vehicle (AGV). The purpose of this paper is to design a self-constructing wavelet neural network (SCWNN) method for dynamical modeling and... Tracking precision of pre-planned trajectories is essential for an auto-guided vehicle (AGV). The purpose of this paper is to design a self-constructing wavelet neural network (SCWNN) method for dynamical modeling and control of a 2-DOF AGV. In control systems of AGVs, kinematical models have been preferred in recent research documents. However, in this paper, to enhance the trajectory tracking performance through including the AGV’s inertial effects in the control system, a learned dynamical model is replaced to the kinematical kind. As the base of a control system, the mathematical models are not preferred due to modeling uncertainties and exogenous inputs. Therefore, adaptive dynamic and control models of AGV are proposed using a four-layer SCWNN system comprising of the input, wavelet, product, and output layers. By use of the SCWNN, a robust controller against uncertainties is developed, which yields the perfect convergence of AGV to reference trajectories. Owing to the adaptive structure, the number of nodes in the layers is adjusted in online and thus the computational burden of the neural network methods is decreased. Using software simulations, the tracking performance of the proposed control system is assessed. 展开更多
关键词 wavelet NEURAL networks Self-Constructing DYNAMICAL modeling TRAJECTORY TRACKING
在线阅读 下载PDF
基于自回归积分滑动平均模型的无线传感网络通信传输信号延迟消除方法
7
作者 崔蕾 王同 《传感技术学报》 北大核心 2025年第3期543-549,共7页
为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程... 为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程的步骤和约束条件,并以此构建无线传感网络通信传输的优化目标函数,引入免疫克隆蛙跳算法对目标函数进行求解,获取最优的传输方案。仿真分析表明,所提方法的延迟预测误差和端到端延迟误差低于0.01 s,能量消耗最大值为6.4 W,平均丢包率最大值为0.286%。上述结果证明了所提方法可以有效准确预测和消除无线传感网络通信传输信号延迟。 展开更多
关键词 无线传感网络 传输信号 延迟消除 自回归积分滑动平均模型 小波神经网络
在线阅读 下载PDF
用于阴影去除的小波非均匀扩散模型
8
作者 黄颖 程彬 +1 位作者 房少杰 刘歆 《中国图象图形学报》 北大核心 2025年第1期66-82,共17页
目的现有的阴影去除方法通常依赖于像素级重建,旨在学习阴影图像和无阴影图像之间的确定性映射关系。然而阴影去除关注阴影区域的局部恢复,容易导致在去除阴影的同时破坏非阴影区域。此外,现有的大多数扩散模型在恢复图像时存在耗时过... 目的现有的阴影去除方法通常依赖于像素级重建,旨在学习阴影图像和无阴影图像之间的确定性映射关系。然而阴影去除关注阴影区域的局部恢复,容易导致在去除阴影的同时破坏非阴影区域。此外,现有的大多数扩散模型在恢复图像时存在耗时过长和对分辨率敏感等问题。为此,提出了一种用于阴影去除的小波非均匀扩散模型。方法首先将图像通过小波分解为低频分量与高频分量,然后针对低频和高频分量分别设计扩散生成网络来重建无阴影图像的小波域分布,并分别恢复这些分量中的各种退化信息,如低频(颜色、亮度)和高频细节等。结果实验在3个阴影数据集上进行训练和测试,在SRD(shadow removal dataset)数据集中,与9种代表性方法进行比较,在非阴影区域和整幅图像上,峰值信噪比(peak signal-to-noise ratio,PSNR)、结构相似性(structural similarity index,SSIM)和均方根误差(root mean square error,RMSE)均取得最优或次优的结果;在ISTD+(augmented dataset with image shadow triplets)数据集中,与6种代表性方法进行比较,在非阴影区域上,性能取得了最佳,PSNR和RMSE分别提高了0.47 dB和0.1。除此之外,在SRD数据集上,ShadowDiffusion方法在生成不同分辨率图像时性能有明显差异,而本文方法性能基本保持稳定。此外,本文方法生成速度与其相比提高了约4倍。结论提出的方法能够加快扩散模型的采样速度,在去除阴影的同时,恢复出阴影区域缺失的颜色、亮度和丰富的细节等信息。 展开更多
关键词 阴影去除 扩散模型(DM) 小波变换 双分支网络 噪声调度表
原文传递
基于神经网络的热负荷预测模型研究 被引量:1
9
作者 张庆环 韩天庆 +1 位作者 曹琦 赵亮 《热科学与技术》 北大核心 2025年第3期261-267,共7页
随着计算机技术的发展,大多数热电公司已经建立了平稳运行的网络系统,这些网络系统在运营管理工作中起到了关键作用。对于网络系统中形成的大量数据,怎样合理分析数据来更好地为企业服务已成为广受关注的问题。为了解决上述问题,本文基... 随着计算机技术的发展,大多数热电公司已经建立了平稳运行的网络系统,这些网络系统在运营管理工作中起到了关键作用。对于网络系统中形成的大量数据,怎样合理分析数据来更好地为企业服务已成为广受关注的问题。为了解决上述问题,本文基于大数据分析热用户的用热特点,并以某热电厂的大量历史数据为例,建立BP神经网络预测模型,预测热电厂蒸汽负荷。针对传统BP神经网络模型容易陷入局部最优解的问题,将小波理论与传统BP神经网络模型相结合,构建小波神经网络模型,提高对热电厂蒸汽负荷预测的准确度。 展开更多
关键词 大数据分析 用热特性 BP神经网络模型 小波神经网络模型
原文传递
消除温度效应滞后影响的桥梁挠度异常监测方法 被引量:2
10
作者 孙家正 郭东升 +2 位作者 杨东辉 伊廷华 张冠华 《应用基础与工程科学学报》 北大核心 2025年第1期40-49,共10页
温度作用下桥梁挠度呈现周期性变化,探究其时变特征在一定程度上能够反映支座、伸缩缝等主梁边界约束的服役性能.建立温度与挠度监测数据间的相关模型,是实现对桥梁挠度异常变化进行识别的重要手段.现有研究忽略了温度与挠度间的滞后效... 温度作用下桥梁挠度呈现周期性变化,探究其时变特征在一定程度上能够反映支座、伸缩缝等主梁边界约束的服役性能.建立温度与挠度监测数据间的相关模型,是实现对桥梁挠度异常变化进行识别的重要手段.现有研究忽略了温度与挠度间的滞后效应,导致建模精度较低,影响桥梁挠度异常的准确识别.鉴于此,提出了一种可自适应消除滞后效应影响的桥梁挠度异常监测方法.首先,基于小波分解方法实现了桥梁温致挠度的准确提取,并筛选了影响桥梁挠度变化的主要温度变量.其次,采用可通过重置门与更新门自适应考虑变量间滞后效应的门控循环单元(Gated Recurrent Unit,GRU)神经网络,建立消除滞后效应影响的温度-挠度相关模型,实现了对桥梁温致挠度的准确预测,并提出了可反映由主梁约束构件服役性能劣化引起挠度改变的异常识别指标.最后,通过实桥结构健康监测数据验证了该方法的有效性.研究结果表明,所提监测方法可有效识别温致挠度异常,为实现对桥梁约束构件性能劣化的在线监测诊断提供了依据. 展开更多
关键词 桥梁健康监测 桥梁挠度 主成分分析 门控循环单元(GRU)神经网络 相关性模型 小波分解
原文传递
重载货车常用制动工况下制动缸压力预测与拟合
11
作者 王鼎 熊芯 马忠 《中国铁路》 北大核心 2025年第2期71-80,88,共11页
在重载列车纵向动力学系统中,制动系统的制动及缓解特性关键参数对车钩力仿真的影响至关重要。基于线路试验实测数据,建立小波神经网络模型,对制动缸升压时间进行预测;采用拟合的方法,获取整个制动缓解过程中各阶段的制动缸压力值;通过... 在重载列车纵向动力学系统中,制动系统的制动及缓解特性关键参数对车钩力仿真的影响至关重要。基于线路试验实测数据,建立小波神经网络模型,对制动缸升压时间进行预测;采用拟合的方法,获取整个制动缓解过程中各阶段的制动缸压力值;通过残差分析和检验,拟合模型的结果得以验证。通过给出的计算模型,可在已知主控机车列车管减压量以及任何1位制动缸压力值的条件下,对列车制动缓解过程中各个位置制动缸压力进行计算,为纵向动力学车钩力仿真提供参数基础。 展开更多
关键词 重载货车 常用制动 制动缸压力 小波神经网络模型 拟合残差分析
在线阅读 下载PDF
基于近红外光谱的连续小波变换与卷积注意力模块建立秦艽的定性分析模型
12
作者 周玉 李四海 +1 位作者 李坤鹏 王泽朋 《理化检验(化学分册)》 北大核心 2025年第4期436-442,共7页
针对近红外光谱的处理研究大多聚焦于对原始的一维光谱信号直接进行卷积特征抽取,为了更加全面地挖掘光谱数据中的信息,提高分类模型的建模效果,提出了连续小波变换与卷积注意力模块建立秦艽定性分析模型的方法。采用连续小波变换将一... 针对近红外光谱的处理研究大多聚焦于对原始的一维光谱信号直接进行卷积特征抽取,为了更加全面地挖掘光谱数据中的信息,提高分类模型的建模效果,提出了连续小波变换与卷积注意力模块建立秦艽定性分析模型的方法。采用连续小波变换将一维的信号转换为二维图像表现形式,以得到的小波时频图作为光谱特征,建立具有注意力机制的秦艽近红外光谱的卷积神经网络定性分析模型Att-GoogleNet,并通过翻转、对比度增强以及加入高斯噪声来扩充数据集实现数据增强,提高模型的泛化能力。结果表明:对207个秦艽样品的产地进行分析,Att-GooogleNet模型的分类准确率为99.6%,准确率、精确率、召回率、特异度、F1分数均优于传统机器学习模型。 展开更多
关键词 近红外光谱 连续小波变换 卷积神经网络 注意力机制 模型 秦艽
在线阅读 下载PDF
基于WTT-iTransformer时序预测的容器群伸缩策略研究
13
作者 陈奇超 叶楠 曹炳尧 《电子测量技术》 北大核心 2025年第12期88-98,共11页
Kubernetes默认的HPA策略因其特有的响应性机制而存在扩缩容滞后的局限。为了提高资源的响应性能和资源利用率,本文引入了基于时序资源负载预测的弹性伸缩策略,预测部分创新得提出了WTT-iTransformer模型对集群资源进行预测。已知iTrans... Kubernetes默认的HPA策略因其特有的响应性机制而存在扩缩容滞后的局限。为了提高资源的响应性能和资源利用率,本文引入了基于时序资源负载预测的弹性伸缩策略,预测部分创新得提出了WTT-iTransformer模型对集群资源进行预测。已知iTransformer不仅在长期序列预测表现优异,还可通过变量序列作为token嵌入获取了多变量间的关联性。本文通过增加了小波变换卷积层WTConv2d和多尺度时间卷积网络的WTT-iTransformer模型可以更精确地从时、频域两方面提取资源时间序列的长期特征与依赖关系,更符合容器使用特征的预测。基于该模型的负载变化预测,能够实现高、低流量发生的初期进行快速扩缩容,以解决反应滞后和资源利用率低的问题。实验结果表明,WTT-iTransformer在训练过程中表现出更好的稳定性和更低的训练误差,能够较为准确地预测集群负载的变化趋势,改进的弹性伸缩策略与Kubernetes传统的HPA相比更加智能、稳定,在负载特征明显、突发性负载较多的场景展现出显著提升,具有广泛的应用潜力。 展开更多
关键词 Kubernetes 时序预测模型WTT-iTransformer 负载预测 混合弹性伸缩策略 小波变换卷积 时间卷积网络 iTransformer模型
原文传递
小波分解和BDLTM-GRU混合模型相融合的桥梁耦合极值应力高精度预测
14
作者 杨渡 樊学平 刘月飞 《振动工程学报》 北大核心 2025年第5期1026-1035,共10页
为实现桥梁耦合极值应力的高精度预测,采用小波多分辨率分析法对监测极值应力进行分解,取分解后的低频数据为趋势项信息,高频数据为车辆荷载效应信息,趋势项减去其均值为温度荷载效应信息,通过以上步骤实现桥梁极值应力的解耦。建立双变... 为实现桥梁耦合极值应力的高精度预测,采用小波多分辨率分析法对监测极值应力进行分解,取分解后的低频数据为趋势项信息,高频数据为车辆荷载效应信息,趋势项减去其均值为温度荷载效应信息,通过以上步骤实现桥梁极值应力的解耦。建立双变量(引入随时间变化的趋势项)贝叶斯动态线性趋势性模型(BDLTM)对低频极值应力进行预测分析;采用GRU神经网络模型对高频极值应力进行预测分析;实现耦合极值应力的叠加预测。利用天津富民桥的监测耦合数据验证BDLTM-GRU模型的可行性,同时与耦合极值应力的单BDLTM和单GRU模型进行精度比较,验证BDLTM-GRU模型预测的高精度。 展开更多
关键词 耦合极值应力 小波多分辨率分析法 BDLTM-GRU模型 BDLTM GRU神经网络
在线阅读 下载PDF
嵌入式医疗设备双电源瞬态过电压检测系统设计
15
作者 赵如如 《国外电子测量技术》 2025年第5期259-264,共6页
过电压会影响医疗设备的正常使用,严重时会造成使用者的人身和财产安全损失。为实现瞬时过电压的实时检测,研究基于小波变换(Wavelet Transform,WT)和卷积神经网络(Convolutional Neural Network,CNN)提出了过电压特征提取方法,并以STM3... 过电压会影响医疗设备的正常使用,严重时会造成使用者的人身和财产安全损失。为实现瞬时过电压的实时检测,研究基于小波变换(Wavelet Transform,WT)和卷积神经网络(Convolutional Neural Network,CNN)提出了过电压特征提取方法,并以STM32H7为硬件支撑,在TFLM(Tensor Flow Lite Micro)框架下构建了用于双电源医疗设备的嵌入式瞬时过电压实时检测模型。在实际应用中,模型对中央处理器(Central Processing Unit,CPU)的占用最大值为22.3%,对随机存取存储器(Random Access Memory,RAM)占用最大值为125 KB。在检测时的上升时间分辨率最大值为0.75μs,增幅误差介于-1.2%~+0.8%之间,且在高频电刀干扰下准确率为90.3%,超声探头干扰下准确率为88.75%。由此可知模型的实际应用效果较好,对于瞬时过电压检测系统的开发具有积极意义。 展开更多
关键词 过电压 小波变换 卷积神经网络 实时检测模型
原文传递
基于小波去噪的变形监测预测模型优化研究
16
作者 王水清 张明栋 张明智 《测绘与空间地理信息》 2025年第2期198-201,204,共5页
采用小波阈值去噪方法对原始变形监测数据进行异常数据剔除插补,分别以去噪前后的数据序列构建灰色GM(1,1)模型和BP神经网络模型,并对去噪前后模型预测结果进行对比分析,结果表明:小波去噪后灰色GM(1,1)模型精度大大提升,预测结果变形... 采用小波阈值去噪方法对原始变形监测数据进行异常数据剔除插补,分别以去噪前后的数据序列构建灰色GM(1,1)模型和BP神经网络模型,并对去噪前后模型预测结果进行对比分析,结果表明:小波去噪后灰色GM(1,1)模型精度大大提升,预测结果变形特征与变形其实与实际观测值更为吻合;小波去噪前BP神经网络模型预测结果较为准确,但小波去噪后模型精度依旧有一定程度的提升。因此,采用小波去噪方法剔除原始观测数据中的噪声影响,能够有效提升变形监测预测模型的精度,提高预测结果的准确性。 展开更多
关键词 小波去噪 灰色GM(1 1)模型 BP神经网络模型 精度分析
在线阅读 下载PDF
A Hybrid Time-delay Prediction Method for Networked Control System 被引量:8
17
作者 Zhong-Da Tian Xian-Wen Gao Kun Li 《International Journal of Automation and computing》 EI CSCD 2014年第1期19-24,共6页
This paper presents an Ethernet based hybrid method for predicting random time-delay in the networked control system.First,db3 wavelet is used to decompose and reconstruct time-delay sequence,and the approximation com... This paper presents an Ethernet based hybrid method for predicting random time-delay in the networked control system.First,db3 wavelet is used to decompose and reconstruct time-delay sequence,and the approximation component and detail components of time-delay sequences are fgured out.Next,one step prediction of time-delay is obtained through echo state network(ESN)model and auto-regressive integrated moving average model(ARIMA)according to the diferent characteristics of approximate component and detail components.Then,the fnal predictive value of time-delay is obtained by summation.Meanwhile,the parameters of echo state network is optimized by genetic algorithm.The simulation results indicate that higher accuracy can be achieved through this prediction method. 展开更多
关键词 networked control system wavelet transform auto-regressive integrated moving average model echo state network genetic algorithm time-delay prediction
原文传递
基于神经网络模型的朝阳市生猪价格预测
18
作者 王艳华 《辽宁师专学报(自然科学版)》 2024年第1期10-14,共5页
选取2020年1月至2023年6月朝阳市生猪日价格和猪饲料中豆粕的日价格作为研究数据,分别建立BP神经网络模型和小波神经网络模型对朝阳市生猪价格进行预测.将前160周的价格数据作为BP神经网络模型和小波神经网络模型训练集数据,161~180周... 选取2020年1月至2023年6月朝阳市生猪日价格和猪饲料中豆粕的日价格作为研究数据,分别建立BP神经网络模型和小波神经网络模型对朝阳市生猪价格进行预测.将前160周的价格数据作为BP神经网络模型和小波神经网络模型训练集数据,161~180周的价格数据作为预测数据,通过图形显示预测值和实际值变化,计算2种神经网格模型的平均绝对误差和均方根误差.通过误差比较分析得出,在朝阳市生猪价格波动领域,小波神经网络模型优于BP神经网络模型,建议推广应用. 展开更多
关键词 BP神经网络模型 小波神经网络模型 生猪价格预测
在线阅读 下载PDF
基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术 被引量:1
19
作者 朱纬 王敏林 董雪明 《电子测量技术》 北大核心 2024年第8期189-194,共6页
基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术... 基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术。为了提高温度误差建模的进度,提高传统神经网络的逼近能力,通过自适应前向线性预测滤波器对建模用测角仪温度漂移数据进行预处理,并采用自适应小波回声神经网络建立温度漂移模型,能够避免传统神经网络结构设计的盲目性和局部最优等问题,增强了网络学习能力和泛化能力,并利用自适应律代替神经网络梯度进行网络训练,提升神经网络的逼近精度和收敛速度。实验结果表明,该模型可以提高光纤陀螺测角仪的测量精度和环境适应性,为光纤陀螺测角仪的性能优化和实际应用提供了可靠的技术支撑。 展开更多
关键词 测角仪 温度误差建模 小波回声神经网络 粒子群优化 自适应前向线性预测滤波器
原文传递
The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN
20
作者 Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu 《通讯和计算机(中英文版)》 2013年第5期724-729,共6页
关键词 模糊神经网络 故障类型 小波变换 识别率 输电线路 模糊推理模型 序电流分量 模糊集理论
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部