Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati...Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.展开更多
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In...Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.展开更多
In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient dow...In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient down-sampling,the visual redundancy of underwater image is removed and the computational coefficients and coding bits are reduced.At the same time,combined with multi-level wavelet decomposition,inter frame motion compensation,entropy coding and other methods,according to the characteristics of different types of frame image data,reduce the number of calculations and improve the coding efficiency.The experimental results show that the reconstructed image quality can meet the visual requirements,and the average compression ratio of underwater video can meet the requirements of underwater acoustic channel transmission rate.展开更多
In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decompo...In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decomposition of chaotic dynamical system is essentially a projection of chaotic attractor on the axes of space opened by the wavelet filter vectors, which corresponds to the time-delayed embedding method of phase space reconstruction proposed by Packard and Takens. The experimental results show that, the structure of dynamical trajectory of chaotic system on the wavelet space is much similar to the original system, and the nonlinear invariants such as correlation dimension, Lyapunov exponent and Kolmogorov entropy are still reserved. It demonstrates that wavelet decomposition is effective for characterizing chaotic dynamical system.展开更多
Sea-water-level(SWL)prediction significantly impacts human lives and maritime activities in coastal regions,particularly at offshore locations with shallow water levels.Long-term SWL forecasts,which are conventionally...Sea-water-level(SWL)prediction significantly impacts human lives and maritime activities in coastal regions,particularly at offshore locations with shallow water levels.Long-term SWL forecasts,which are conventionally obtained via harmonic analysis,become ineffective when nonperiodic meteorological events predominate.Artificial intelligence combined with other data-processing methods can effectively forecast highly nonlinear and nonstationary inflow patterns by recognizing historical relationships between input and output.These techniques are considerably useful in time-series data predictions.This paper reports the development of a hybrid model to realize accurate multihour SWL forecasting by combining an adaptive neuro-fuzzy inference system(ANFIS)with wavelet decomposition while using sea-level anomaly(SLA)and wind-shear-velocity components as inputs.Numerous wavelet-ANFIS(WANFIS)models have been tested using different inputs to assess their applicability as alternatives to the artificial neural network(ANN),wavelet ANN(WANN),and ANFIS models.Different error definitions have been used to evaluate results,which indicate that integrated wavelet-decomposition and ANFIS models improve the accuracy of SWL prediction and that the inputs of SLA and wind-shear velocity exhibit superior prediction capability compared to conventional SWL-only models.展开更多
This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined...This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined with various traditional forecasting time-series models,such as Least Square Support Vector Machine(LSSVM),Artificial Neural Network(ANN)and Multivariate Adaptive Regression Splines(MARS)and their effects are examined in terms of the statistical estimations.The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters,which has yielded tremendous constructive outcomes.Further,it is observed that the wavelet combined models are classy compared to the various time series models in terms of performance basis.Therefore,combining wavelet forecasting models has yielded much better results.展开更多
Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal...Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal response into several temporal series in different frequency ranges. Barometric and tidal coefficients in different frequency ranges are computed with least squares method to remove barometric and tidal response. Comparing this method with general linear regression analysis method, we find wavelet analysis method can efficiently remove barometric and earth tidal response in borehole water level. Wavelet analysis method is based on wave theory and vibration theories. It not only considers the frequency characteristic of the observed data but also the temporal characteristic, and it can get barometric and tidal coefficients in different frequency ranges. This method has definite physical meaning.展开更多
Using both the wavelet decomposition and the phase space embedding, the phase trajectories of electroencephalogram (EEG) is described. It is illustrated based on the present work,that is,the wavelet decomposition of E...Using both the wavelet decomposition and the phase space embedding, the phase trajectories of electroencephalogram (EEG) is described. It is illustrated based on the present work,that is,the wavelet decomposition of EEG is essentially a projection of EEG chaotic attractor onto the wavelet space opened by wavelet filter vectors, which is in correspondence with the phase space embedding of the same EEG. In other words, wavelet decomposition and phase space embedding are equivalent in methodology. Our experimental results show that in both the wavelet space and the embedded space the structure of phase trajectory of EEG is similar to each other. These results demonstrate that wavelet decomposition is effective on characterizing EEG time series.展开更多
To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(...To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(WPD)and enhanced deep learning techniques.In the proposed method,an agent at the receiver processes the received signal using WPD to generate an initial Spectrogram Waterfall(SW),which is subsequently segmented using a sliding window to serve as the input for the jamming recognition network.The network employs a bilateral filter to preprocess the input SW,thereby enhancing the edge features of the jamming signals.To extract abstract features,depthwise separable convolution is utilized instead of traditional convolution,thereby reducing the network’s parameter count and enhancing real-time performance.A pyramid pooling layer is integrated before the fully connected layer to enable the network to process input SW of varying sizes,thus enhancing scalability.During network training,adaptive moment estimation is employed as the optimizer,allowing the network to dynamically adjust the learning rate and accelerate convergence.A comprehensive comparison between the proposed jamming recognition network and six other models is conducted,along with Ablation Experiments(AE)based on numerical simulations.Simulation results demonstrate that the proposed method based on WPD and enhanced deep learning achieves high-precision recognition of various jamming patterns while maintaining a favorable balance among prediction accuracy,network complexity,and prediction time.展开更多
Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses signif...Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses significant challenges for forecasting.To address the data uncertainty of electricity prices and effectively mitigate gradient issues,overfitting,and computational challenges associated with using a single model during forecasting,this paper proposes a framework for forecasting spot market electricity prices by integrating wavelet packet decomposition(WPD)with a hybrid deep neural network.By ensuring accurate data decomposition,the WPD algorithm aids in detecting fluctuating patterns and isolating random noise.The hybrid model integrates temporal convolutional networks(TCN)and long short-term memory(LSTM)networks to enhance feature extraction and improve forecasting performance.Compared to other techniques,it significantly reduces average errors,decreasing mean absolute error(MAE)by 27.3%,root mean square error(RMSE)by 66.9%,and mean absolute percentage error(MAPE)by 22.8%.This framework effectively captures the intricate fluctuations present in the time series,resulting in more accurate and reliable predictions.展开更多
Arrhythmias may lead to sudden cardiac death if not detected and treated in time.A supraventricular premature beat(SPB)and premature ventricular contraction(PVC)are important categories of arrhythmia disease.Recently,...Arrhythmias may lead to sudden cardiac death if not detected and treated in time.A supraventricular premature beat(SPB)and premature ventricular contraction(PVC)are important categories of arrhythmia disease.Recently,deep learning methods have been applied to the PVC/SPB heartbeats detection.However,most researchers have focused on time-domain information of the electrocardiogram and there has been a lack of exploration of the interpretability of the model.In this study,we design an interpretable and accurate PVC/SPB recognition algorithm,called the interpretable multilevel wavelet decomposition deep network(IMWDDN).Wavelet decomposition is introduced into the deep network and the squeeze and excitation(SE)-Residual block is designed for extracting time-domain and frequency-domain features.Additionally,inspired by the idea of residual learning,we construct a novel loss function for the constant updating of the multilevel wavelet decomposition parameters.Finally,the IMWDDN is evaluated on the Third China Physiological Signal Challenge Dataset and the MIT-BIH Arrhythmia database.The comparison results show IMWDDN has better detection performance with 98.51%accuracy and a 93.75%F1-macro on average,and its areas of concern are similar to those of an expert diagnosis to a certain extent.Generally,the IMWDDN has good application value in the clinical screening of PVC/SPB heartbeats.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
The optical fiber pre-waming system (OFPS) has been gradually considered as one of the important means for pipeline safety monitoring. Intrusion signal types are correctly identified which could reduce the cost of t...The optical fiber pre-waming system (OFPS) has been gradually considered as one of the important means for pipeline safety monitoring. Intrusion signal types are correctly identified which could reduce the cost of troubleshooting and maintenance of the pipeline. Most of the previous feature extraction methods in OFPS are usually quested from the view of time domain. However, in some cases, there is no distinguishing feature in the time domain. In the paper, firstly, the intrusion signal features of the running, digging, and pick mattock are extracted in the frequency domain by multi-level wavelet decomposition, that is, the intrusion signals are decomposed into five bands. Secondly, the average energy ratio of different frequency bands is obtained, which is considered as the feature of each intrusion type. Finally, the feature samples are sent into the random vector functional-link (RVFL) network for training to complete the classification and identification of the signals. Experimental results show that the algorithm can correctly distinguish the different intrusion signals and achieve higher recognition rate.展开更多
Traffic congestion is a growing problem in urban areas all over the world. The transport sector has been in full swing event study on intelligent transportation system for automatic detection. The functionality of aut...Traffic congestion is a growing problem in urban areas all over the world. The transport sector has been in full swing event study on intelligent transportation system for automatic detection. The functionality of automatic incident detection on expressways is a primary objective of advanced traffic management system. In order to save lives and prevent secondary incidents, accurate and prompt incident detection is necessary. This paper presents a methodology that integrates moving average (MA) model with stationary wavelet decomposition for automatic incident detection, in which parameters of layer coefficient are extracted from the difference between the upstream and downstream occupancy. Unlike other wavelet-based method presented before, firstly it smooths the raw data with MA model. Then it uses stationary wavelet to decompose, which can achieve accurate reconstruction of the signal, and does not shift the signal transfer coefficients. Thus, it can detect the incidents more accurately. The threshold to trigger incident alarm is also adjusted according to normal traffic condition with con- gestion. The methodology is validated with real data from Tokyo Expressway ultrasonic sensors. Ex- perimental results show that it is accurate and effective, and that it can differentiate traffic accident from other condition such as recurring traffic congestion.展开更多
In this work,the ionospheric variability is analyzed by applying the wavelet decomposition technique to the noontime fo F2,F10.7,interplanetary magnetic field(IMF)Bz,Ap,and lower thermospheric temperature at pressure ...In this work,the ionospheric variability is analyzed by applying the wavelet decomposition technique to the noontime fo F2,F10.7,interplanetary magnetic field(IMF)Bz,Ap,and lower thermospheric temperature at pressure of 10?4 h Pa in 2002.Results show that the variance of periodic oscillations in the ionosphere is largest in the 2–4-day period and declines with the increase of the period.The maximum variance of the periodic oscillations in solar irradiation is in the 16–32-day period.For geomagnetic activities,most of the variance is about equally distributed on intervals of periods shorter than 32 days.Variance distributions of IMF Bz and lower thermospheric temperature are similar to those of the ionosphere.They show the maximum in the 2–4-day period and decline with the increase of the period.By analyzing the distributions of the variances,the potential connections between the ionosphere and the external sources are discussed.展开更多
Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) ...Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) is used during the PCG in order to identify the systolic and diastolic parts manually. In this study a heart sound segmentation algorithm has been developed which separates the heart sound signal into these parts automa- tically. This study was carried out on 100 patients with normal and abnormal heart sounds. The algorithm uses discrete wavelet decomposition and reconstruction to pro- duce PCG intensity envelopes and separates that into four parts: the first heart sound, the systolic period, the second heart sound and the diastolic period. The performance of the algorithm has been evaluated using 14,000 cardiac periods from 100 digital PCG recordings, including normal and abnormal heart sounds. In tests, the algorithm was over93% correct in detecting the first and second heart sounds. The presented automatic seg- mentation Mgorithm using w^velet decomposition and reconstruction to select suitable frequency band for envelope calculations has been found to be effective to segment PCG signals into four parts without using an ECG.展开更多
On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at di...On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at different depths,and give some explanation to gravity variation at different time space scales. Gravity variation trends in North China are improved. Based on this result and the analysis of wavelet power spectrum,the images of the depth of wavelet approximation and detail are obtained. The results obtained are of scientific significance for the deep understanding of potential seismic risk in North China from gravity variations in different time space scales.展开更多
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network...Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network.展开更多
Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutt...Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutting tools.Research efforts were made to develop the wheel wear monitoring system due to its significance in grinding process.This paper presents a novel method for identification of grinding wheel wear signature by combination of wavelet packet decomposition(WPD) based energies.The distinctive feature of the method is that it takes advantage of the combinational information of the decomposed frequency components based on the WPD so the extracted features can be customized according to the specific monitored object to get better diagnosis effects.Experiments are researched on monitoring of grinding wheel wear states under different machining conditions.The results show that the energy ratio extracted from the measured vibration signals is consistent with the grinding wheel wear condition evaluated by experiment and the further extracted feature ratio can be used in prediction of wheel wear condition.展开更多
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo...One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.展开更多
基金funded by NARI Group’s Independent Project of China(Granted No.524609230125)the foundation of NARI-TECH Nanjing Control System Ltd.of China(Granted No.0914202403120020).
文摘Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.
基金supported by the National Key Research and Development Program of China [grant number2017YFA0604500]
文摘Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.
文摘In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient down-sampling,the visual redundancy of underwater image is removed and the computational coefficients and coding bits are reduced.At the same time,combined with multi-level wavelet decomposition,inter frame motion compensation,entropy coding and other methods,according to the characteristics of different types of frame image data,reduce the number of calculations and improve the coding efficiency.The experimental results show that the reconstructed image quality can meet the visual requirements,and the average compression ratio of underwater video can meet the requirements of underwater acoustic channel transmission rate.
基金supported by the Natural Science Foundation of Fujian Province of China (Grant Nos. 2010J01210 and T0750008)
文摘In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decomposition of chaotic dynamical system is essentially a projection of chaotic attractor on the axes of space opened by the wavelet filter vectors, which corresponds to the time-delayed embedding method of phase space reconstruction proposed by Packard and Takens. The experimental results show that, the structure of dynamical trajectory of chaotic system on the wavelet space is much similar to the original system, and the nonlinear invariants such as correlation dimension, Lyapunov exponent and Kolmogorov entropy are still reserved. It demonstrates that wavelet decomposition is effective for characterizing chaotic dynamical system.
基金The National Key R&D Program of China under contract No.2016YFC1402609。
文摘Sea-water-level(SWL)prediction significantly impacts human lives and maritime activities in coastal regions,particularly at offshore locations with shallow water levels.Long-term SWL forecasts,which are conventionally obtained via harmonic analysis,become ineffective when nonperiodic meteorological events predominate.Artificial intelligence combined with other data-processing methods can effectively forecast highly nonlinear and nonstationary inflow patterns by recognizing historical relationships between input and output.These techniques are considerably useful in time-series data predictions.This paper reports the development of a hybrid model to realize accurate multihour SWL forecasting by combining an adaptive neuro-fuzzy inference system(ANFIS)with wavelet decomposition while using sea-level anomaly(SLA)and wind-shear-velocity components as inputs.Numerous wavelet-ANFIS(WANFIS)models have been tested using different inputs to assess their applicability as alternatives to the artificial neural network(ANN),wavelet ANN(WANN),and ANFIS models.Different error definitions have been used to evaluate results,which indicate that integrated wavelet-decomposition and ANFIS models improve the accuracy of SWL prediction and that the inputs of SLA and wind-shear velocity exhibit superior prediction capability compared to conventional SWL-only models.
文摘This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined with various traditional forecasting time-series models,such as Least Square Support Vector Machine(LSSVM),Artificial Neural Network(ANN)and Multivariate Adaptive Regression Splines(MARS)and their effects are examined in terms of the statistical estimations.The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters,which has yielded tremendous constructive outcomes.Further,it is observed that the wavelet combined models are classy compared to the various time series models in terms of performance basis.Therefore,combining wavelet forecasting models has yielded much better results.
基金The research was jointly supported by National NatureScience Foundation of China (40374019)the research subject entitled"Research on the Digital Data Analysis and Application of Underground Fluid" under the 11th Five-Year Program of China Earthquake Administration(2006BAC01B02-03-02)
文摘Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal response into several temporal series in different frequency ranges. Barometric and tidal coefficients in different frequency ranges are computed with least squares method to remove barometric and tidal response. Comparing this method with general linear regression analysis method, we find wavelet analysis method can efficiently remove barometric and earth tidal response in borehole water level. Wavelet analysis method is based on wave theory and vibration theories. It not only considers the frequency characteristic of the observed data but also the temporal characteristic, and it can get barometric and tidal coefficients in different frequency ranges. This method has definite physical meaning.
基金Natural Science Foundation of Fujian Province of ChinaGrant number:C0710036 and E0610023
文摘Using both the wavelet decomposition and the phase space embedding, the phase trajectories of electroencephalogram (EEG) is described. It is illustrated based on the present work,that is,the wavelet decomposition of EEG is essentially a projection of EEG chaotic attractor onto the wavelet space opened by wavelet filter vectors, which is in correspondence with the phase space embedding of the same EEG. In other words, wavelet decomposition and phase space embedding are equivalent in methodology. Our experimental results show that in both the wavelet space and the embedded space the structure of phase trajectory of EEG is similar to each other. These results demonstrate that wavelet decomposition is effective on characterizing EEG time series.
基金supported by National Natural Science Foundation of China under Grant U23A20279China Electronics Tian’ao Innovation Theory and Technology Group Fund under Grand 20221193-04-04.
文摘To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(WPD)and enhanced deep learning techniques.In the proposed method,an agent at the receiver processes the received signal using WPD to generate an initial Spectrogram Waterfall(SW),which is subsequently segmented using a sliding window to serve as the input for the jamming recognition network.The network employs a bilateral filter to preprocess the input SW,thereby enhancing the edge features of the jamming signals.To extract abstract features,depthwise separable convolution is utilized instead of traditional convolution,thereby reducing the network’s parameter count and enhancing real-time performance.A pyramid pooling layer is integrated before the fully connected layer to enable the network to process input SW of varying sizes,thus enhancing scalability.During network training,adaptive moment estimation is employed as the optimizer,allowing the network to dynamically adjust the learning rate and accelerate convergence.A comprehensive comparison between the proposed jamming recognition network and six other models is conducted,along with Ablation Experiments(AE)based on numerical simulations.Simulation results demonstrate that the proposed method based on WPD and enhanced deep learning achieves high-precision recognition of various jamming patterns while maintaining a favorable balance among prediction accuracy,network complexity,and prediction time.
基金partially supported by projects funded by the National Key R&D Program of China(2022YFB2403000)the State Grid Corporation of China Science and Technology Project(522722230034).
文摘Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses significant challenges for forecasting.To address the data uncertainty of electricity prices and effectively mitigate gradient issues,overfitting,and computational challenges associated with using a single model during forecasting,this paper proposes a framework for forecasting spot market electricity prices by integrating wavelet packet decomposition(WPD)with a hybrid deep neural network.By ensuring accurate data decomposition,the WPD algorithm aids in detecting fluctuating patterns and isolating random noise.The hybrid model integrates temporal convolutional networks(TCN)and long short-term memory(LSTM)networks to enhance feature extraction and improve forecasting performance.Compared to other techniques,it significantly reduces average errors,decreasing mean absolute error(MAE)by 27.3%,root mean square error(RMSE)by 66.9%,and mean absolute percentage error(MAPE)by 22.8%.This framework effectively captures the intricate fluctuations present in the time series,resulting in more accurate and reliable predictions.
基金supported by the National Postdoctoral Program for Innovative Talents(Grant No.BX20230215)China Postdoctoral Science Foundation(Grant No.2023M732219)Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX0102)。
文摘Arrhythmias may lead to sudden cardiac death if not detected and treated in time.A supraventricular premature beat(SPB)and premature ventricular contraction(PVC)are important categories of arrhythmia disease.Recently,deep learning methods have been applied to the PVC/SPB heartbeats detection.However,most researchers have focused on time-domain information of the electrocardiogram and there has been a lack of exploration of the interpretability of the model.In this study,we design an interpretable and accurate PVC/SPB recognition algorithm,called the interpretable multilevel wavelet decomposition deep network(IMWDDN).Wavelet decomposition is introduced into the deep network and the squeeze and excitation(SE)-Residual block is designed for extracting time-domain and frequency-domain features.Additionally,inspired by the idea of residual learning,we construct a novel loss function for the constant updating of the multilevel wavelet decomposition parameters.Finally,the IMWDDN is evaluated on the Third China Physiological Signal Challenge Dataset and the MIT-BIH Arrhythmia database.The comparison results show IMWDDN has better detection performance with 98.51%accuracy and a 93.75%F1-macro on average,and its areas of concern are similar to those of an expert diagnosis to a certain extent.Generally,the IMWDDN has good application value in the clinical screening of PVC/SPB heartbeats.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金The authors wish to express their gratitude to the anonymous reviewers and the associate editor for their rigorous comments during the review process. In addition, authors also would like to thank SUN Chengbin and TAN Lei in our laboratory for their great contributions to the data-collection work. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61571014 and 61601006), Beijing Nature Science Foundation (Grant No. 4172017), and Beijing Municipal Science and Technology Project (Grant No. Z161100001016003).
文摘The optical fiber pre-waming system (OFPS) has been gradually considered as one of the important means for pipeline safety monitoring. Intrusion signal types are correctly identified which could reduce the cost of troubleshooting and maintenance of the pipeline. Most of the previous feature extraction methods in OFPS are usually quested from the view of time domain. However, in some cases, there is no distinguishing feature in the time domain. In the paper, firstly, the intrusion signal features of the running, digging, and pick mattock are extracted in the frequency domain by multi-level wavelet decomposition, that is, the intrusion signals are decomposed into five bands. Secondly, the average energy ratio of different frequency bands is obtained, which is considered as the feature of each intrusion type. Finally, the feature samples are sent into the random vector functional-link (RVFL) network for training to complete the classification and identification of the signals. Experimental results show that the algorithm can correctly distinguish the different intrusion signals and achieve higher recognition rate.
基金supported by Jiangsu Provincial Government Scholarshipthe National Natural Science Foundation of China(No.51008143)
文摘Traffic congestion is a growing problem in urban areas all over the world. The transport sector has been in full swing event study on intelligent transportation system for automatic detection. The functionality of automatic incident detection on expressways is a primary objective of advanced traffic management system. In order to save lives and prevent secondary incidents, accurate and prompt incident detection is necessary. This paper presents a methodology that integrates moving average (MA) model with stationary wavelet decomposition for automatic incident detection, in which parameters of layer coefficient are extracted from the difference between the upstream and downstream occupancy. Unlike other wavelet-based method presented before, firstly it smooths the raw data with MA model. Then it uses stationary wavelet to decompose, which can achieve accurate reconstruction of the signal, and does not shift the signal transfer coefficients. Thus, it can detect the incidents more accurately. The threshold to trigger incident alarm is also adjusted according to normal traffic condition with con- gestion. The methodology is validated with real data from Tokyo Expressway ultrasonic sensors. Ex- perimental results show that it is accurate and effective, and that it can differentiate traffic accident from other condition such as recurring traffic congestion.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174134 and 41274156)the National Basic Research Program of China("973"Project)(Grant No.2011CB811405)
文摘In this work,the ionospheric variability is analyzed by applying the wavelet decomposition technique to the noontime fo F2,F10.7,interplanetary magnetic field(IMF)Bz,Ap,and lower thermospheric temperature at pressure of 10?4 h Pa in 2002.Results show that the variance of periodic oscillations in the ionosphere is largest in the 2–4-day period and declines with the increase of the period.The maximum variance of the periodic oscillations in solar irradiation is in the 16–32-day period.For geomagnetic activities,most of the variance is about equally distributed on intervals of periods shorter than 32 days.Variance distributions of IMF Bz and lower thermospheric temperature are similar to those of the ionosphere.They show the maximum in the 2–4-day period and decline with the increase of the period.By analyzing the distributions of the variances,the potential connections between the ionosphere and the external sources are discussed.
文摘Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) is used during the PCG in order to identify the systolic and diastolic parts manually. In this study a heart sound segmentation algorithm has been developed which separates the heart sound signal into these parts automa- tically. This study was carried out on 100 patients with normal and abnormal heart sounds. The algorithm uses discrete wavelet decomposition and reconstruction to pro- duce PCG intensity envelopes and separates that into four parts: the first heart sound, the systolic period, the second heart sound and the diastolic period. The performance of the algorithm has been evaluated using 14,000 cardiac periods from 100 digital PCG recordings, including normal and abnormal heart sounds. In tests, the algorithm was over93% correct in detecting the first and second heart sounds. The presented automatic seg- mentation Mgorithm using w^velet decomposition and reconstruction to select suitable frequency band for envelope calculations has been found to be effective to segment PCG signals into four parts without using an ECG.
基金funded by the Special Fund for Earthquake Scientific Research of China(201308004,201308009)
文摘On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at different depths,and give some explanation to gravity variation at different time space scales. Gravity variation trends in North China are improved. Based on this result and the analysis of wavelet power spectrum,the images of the depth of wavelet approximation and detail are obtained. The results obtained are of scientific significance for the deep understanding of potential seismic risk in North China from gravity variations in different time space scales.
基金Project(2007CB311106) supported by National Key Basic Research Program of ChinaProject(NEUL20090101) supported by the Foundation of National Information Control Laboratory of China
文摘Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network.
基金the National Key Laboratory of Mechanical Transmission Foundation of China(No. SKLMT-KFKT-200812)
文摘Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutting tools.Research efforts were made to develop the wheel wear monitoring system due to its significance in grinding process.This paper presents a novel method for identification of grinding wheel wear signature by combination of wavelet packet decomposition(WPD) based energies.The distinctive feature of the method is that it takes advantage of the combinational information of the decomposed frequency components based on the WPD so the extracted features can be customized according to the specific monitored object to get better diagnosis effects.Experiments are researched on monitoring of grinding wheel wear states under different machining conditions.The results show that the energy ratio extracted from the measured vibration signals is consistent with the grinding wheel wear condition evaluated by experiment and the further extracted feature ratio can be used in prediction of wheel wear condition.
基金supported by the State Key Program of National Natural Science of China (No. 11232009)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.