Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb...Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb wave activity fluxes.The planetary wave propagation can clearly be seen in the longitude-height and latitude-height sections of the Plumb wave activity flux and EP flux,respectively,when the stratospheric basic state is partially reflective.Primarily,a wave packet emanating from Baffin Island/coast of Labrador propagated eastward,equatorward and was reflected over Central Eurasia and parts of China,which in turn triggered the advection of cold wind from the northern part of the boreal forest regions and Siberia to the subtropics.The wide region of Central Eurasia and China experienced extreme cold weather during the second ten days of January 2008,whereas the extraordinary persistence of the event might have occurred due to an anomalous blocking high in the Urals-Siberia region.展开更多
Planetary wave reflection from the stratosphere played a significant role in changing the tropospheric circulation pattern over Eurasia in mid-January 2008. We studied the 2008 event and compared with composite analys...Planetary wave reflection from the stratosphere played a significant role in changing the tropospheric circulation pattern over Eurasia in mid-January 2008. We studied the 2008 event and compared with composite analysis (winters of 2002/2003, 200412005, 200612007, 200712008, 201012011 and 2011/2012), when the downward coupling was stronger, by employing time-lagged singular value decomposition analysis on the geopotential height field. In the Northern Hemisphere, the geopo- tential fields were decomposed into zonal mean and wave components to compare the relative covariance patterns. It was found that the wavenumber 1 (WN1) component was dominant compared with the wavenumber 2 (WN2) component and zonal mean process. For the WNI field, the covariance was much higher (lower) for the negative (positive) lag, with a prominent peak around +15 days when the leading stratosphere coupled strongly with the troposphere. It contributed to the downward coupling due to reflection, when the stratosphere exhibited a partially reflective background state. We also analyzed the evolution of the WNI anomaly and heat flux anomaly, both in the troposphere and stratosphere, during January- March 2008. The amplitude of the tropospheric WN 1 pattern reached a maximum and was consistent with a downward wave coupling event influenced by the stratospheric WN1 anomaly at 10 hPa. This was consistent with the reflection of the WN1 component over Eurasia, which triggered an anomalous blocking high in the Urals-Siberia region. We further clarified the impact of reflection on the tropospheric WNI field and hence the tropospheric circulation pattern by changing the propagation direction during and after the event.展开更多
Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In ...Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In order to verify the prediction efficacy and accuracy of the seismic wave reflection method with different instruments and equipment(tunnel geological prediction[TGP]/tunnel seismic prediction[TSP])and different vibration modes(hammering,explosives),a comparison test was carried out in Jinping Tunnel.The test results showed that the time-consumption of the hammering source was short,which can greatly reduce the impact on the construction site;different vibration sources methods of seismic wave reflection can predict the unfavorable geological sections accurately.展开更多
The wave reflection coefficient frequency spectrum and directional spectrum for concrete face slope breakwaters and rubble mound breakwaters are investigated through physical model tests in the present study. The refl...The wave reflection coefficient frequency spectrum and directional spectrum for concrete face slope breakwaters and rubble mound breakwaters are investigated through physical model tests in the present study. The reflection coefficients of oblique irregular waves are analyzed by the Modified Two-Point Method (MTPM) proposed by the authors. The results show that the wave reflection coefficient decreases with increasing wave frequency and incident angle or decreasing structure slope. The reflection coefficient frequency spectrum and its variation with Iribarren number are given in this paper. The paper also suggests an empirical 3-dimensional reflection coefficient spectrum, i.e. reflection coefficient directional spectrum, which can be used to illustrate quantitatively the variation of reflection coefficient with the incident angle and the Iribarren number for oblique irregular waves.展开更多
Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged st...Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged structures include a submerged horizontal plate, submerged breakwa ters (rectangular and trapezoidal) and a step-type structure (topography). First, the BFC method is ver ified by comparing the computed results with the experimental data, including wave surface elevations, reflected and transmitted wave heights, and amplitudes of higher harmonics, showing that the method is a reasonable one to predict wave deformations due to the submerged structures. Secondly, the wave sur face elevations and the higher harmonics over different submerged structures are compared. Thirdly, re flected and transmitted waves due to different submerged structures are investigated.展开更多
In channel reservoirs,a quantitative characterization of landslide-generated impulse wave-structure interactions is essential for evaluating potential damage to infrastructure and dams.In this study,the problem of lan...In channel reservoirs,a quantitative characterization of landslide-generated impulse wave-structure interactions is essential for evaluating potential damage to infrastructure and dams.In this study,the problem of landslide-generated impulse waves that attack a vertical wall was investigated in a wave channel via a smooth particle hydrodynamics(SPH)method coupled with a Chrono model.The results indicated that the longitudinal velocity beneath the leading wave crest of an incident impulse wave deviated significantly from solitary wave theory.Moreover,the variation rate in the vertical velocity along the water column coincided with the theoretical prediction only for small wave amplitudes.Nevertheless,the maximum run-up height of an impulse wave can be accurately predicted via the solitary wave theory.Moreover,the maximum wall force during impulse wave-wall interaction was significantly larger than that during solitary wave reflection,particularly for high incident wave amplitudes.Overall,the present study demonstrated some striking differences in the interactions of landslide-generated impulse waves and solitary waves with a vertical wall.展开更多
The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and ...The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and solves the unsteady axisymmetric Euler equation to study the characteristics of the Axisymmetric Inward Turning Curved Detonation Wave(AIT-CDW)flow field and the parameters affecting the stability of the wave system structure of AIT-CDW flow field.The numerical results demonstrate a radial compression effect in the AIT-CDW flow field.This effect causes the detonation wave to have a shorter initiation length than oblique detonation wave flow field and the detonation wave angle to gradually increase with the flow direction postdetonation.The AIT-CDW flow field is confined space,making it prone to normal detonation waves when the detonation wave reflects from the wall.This phenomenon is detrimental to the stability of the wave system structure in the flow field.It has been observed that increasing the center body radius and decreasing the fuel equivalent ratio can effectively reduce the height of the normal detonation wave or even eliminate it.Additionally,a well-designed generatrix shape of the center body can enhance airflow,reduce choked flow,and promote the stability of the wave structure in the flow field.展开更多
The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to e...The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to expand velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with experimental data. The effect of porosity, the relative chamber width, the relative water depth in the wave absorbing chamber and the water depth in front of the structure are discussed.展开更多
In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perfor...In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perforated thin Plexiglas plates of various porosities. The plate is placed perpendicular to the flume with the height from the flume bottom to the position above water surface. With this thin wall in the flume wave overtopping is prohibited and incident waves are able to transmit. The porosities of the walls are achieved by perforating the plates with circular holes. Model settings with double perforated walls parallel to each other forming so called chamber system, have been also examined. Several parameters have been used for correlating the laboratory tests’ results. Experimental data are also compared with results from the numerical model by applying the multi-domain boundary element method (MDBEM) with linear wave theory. Wave energy dissipation due to the perforations of the thin wall has been represented by a simple yet effective porosity parameter in the model. The numerical model with the MDBEM has been further validated against the previously published data.展开更多
An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of f...An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.展开更多
Through solving the Zoeppritz's partial derivative equations, we have obtained accurate partial derivatives of reflected coefficients of seismic wave with respect to Pand S-wave velocities.With those partial deriv...Through solving the Zoeppritz's partial derivative equations, we have obtained accurate partial derivatives of reflected coefficients of seismic wave with respect to Pand S-wave velocities.With those partial derivatives, a multi-angle inversion is developed for seismic wave velocities.Numerical examples of different formation models show that if the number of iterations goes over 10, the relative error of inversion results is less than 1%, whether or not there is interference among the reflection waves.When we only have the reflected seismograms of P-wave, and only invert for velocities of P-wave, the multi-angle inversion is able to obtain a high computation precision.When we have the reflected seismograms of both P-wave and VS-wave, and simultaneously invert for the velocities of P-wave and VS-wave, the computation precisions of VS-wave velocities improves gradually with the increase of the number of angles, but the computation precision of P-wave velocities becomes worse.No matter whether the reflected seismic waves from the different reflection interface are coherent or non-coherent, this method is able to achieve a higher computation precision.Because it is based on the accurate solution of the gradient of SWRCs without any additional restriction, the multi-angle inversion method can be applied to seismic inversion of total angles.By removing the difficulties caused by simplified Zoeppritz formulas that the conventional AVO technology struggles with, the multiangle inversion method extended the application range of AVO technology and improved the computation precision and speed of inversion of seismic wave velocities.展开更多
The interactions between regular surface waves and a surface-pitching slotted barrier are investigated both analytically and experimentally. A quasi-linear theory is developed using the eigenfunction expansion method....The interactions between regular surface waves and a surface-pitching slotted barrier are investigated both analytically and experimentally. A quasi-linear theory is developed using the eigenfunction expansion method. The energy dissipation within the barriers is modeled by a quadratic friction factor, and an equivalent linear dissipation coefficient, which is depth-varying, wave-height dependent, is introduced to linearize the matching condition at the surface-pitching barrier. By comparing the theoretical results with laboratory experiments, it is shown that the present method can satisfactorily predict the variation of the reflection and transmission coefficients with wave height.展开更多
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation ref...When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.展开更多
Estimation of an accurate macro velocity model plays an important role in seismic imag- ing and model parameter inversion. Full waveform inversion (FWI) is the classical data-domain inver- sion method. However, the ...Estimation of an accurate macro velocity model plays an important role in seismic imag- ing and model parameter inversion. Full waveform inversion (FWI) is the classical data-domain inver- sion method. However, the misfit function of FWI is highly nonlinear, and the local optimization cannot prevent convergence of the misfit function toward local minima. To converge to the global minimum, FWI needs a good initial model or reliable low frequency component and long offset data. In this article, we present a wave-equation-based reflection traveltime tomography (WERTT) method, which can pro- vide a good background model (initial model) for FWI and (least-square) pre-stack depth migration (LS-PSDM). First, the velocity model is decomposed into a low-wavenumber component (background velocity) and a high-wavenumber component (reflectivity). Second, the primary reflection wave is pre- dicted by wave-equation demigration, and the reflection traveltime is calculated by an automatic picking method. Finally, the misfit function of the 12-norm of the reflection traveltime residuals is mini- mized by a gradient-based method. Numerical tests show that the proposed method can invert a good background model, which can be used as an initial model for LS-PSDM or FWI.展开更多
The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isotherma...The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically.展开更多
An exact analytic solution for wave diffraction by wedge or corner with arbitrary angle (rπ) and reflection coefficients (R0 and Rr) is presented in this paper. It is expressed in two forms-series and integral repres...An exact analytic solution for wave diffraction by wedge or corner with arbitrary angle (rπ) and reflection coefficients (R0 and Rr) is presented in this paper. It is expressed in two forms-series and integral representations, corresponding recurrence relation and asymptotic expressions are also derived. The solution is simplified for some special cases of rπ. For Rr= R0,r= 1/N and Rr≠R0,r = 1/2N, the solution can be reduced to linear superpositions of incident and partially reflected waves, hence a nonlinear solution of forth order for this problem can be obtained by using the author's theory of nonlinear interaction among gravity surface waves. The given solution is related to inhomogeneous Robin boundary conditions, which include the Neumann boundary conditions usually accepted in wave diffraction theory.展开更多
The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is ...The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.展开更多
According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is p...According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is proposed. Different reflection tests are conducted to check the theoretical analysis. A modified method to estimate the reflection coefficient at varied water depths is suggested based on the linear wave theory. The study indicates that the reflection coefficient from mild beaches has a changing trend for short waves approaching shoreline.展开更多
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda...In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.展开更多
Reflections of a Korteweg-de Vries (KdV) solitary wave and an envelope solitary wave are studied by using the particle-in-cell simulation method. Defining the phase shift of the reflected solitary wave, we notice th...Reflections of a Korteweg-de Vries (KdV) solitary wave and an envelope solitary wave are studied by using the particle-in-cell simulation method. Defining the phase shift of the reflected solitary wave, we notice that there is a phase shift of the reflected KdV solitary wave, while there is no phase shift for an envelope solitary wave. It is also noted that the reflection of a KdV solitary wave at a solid boundary is equivalent to the head-on collision between two identical amplitude solitary waves.展开更多
基金supported jointly by the National Basic Research Program of China (Grant No. 2010CB 428603)the National Natural Science Foundation of China (Grants Nos. 41250110073, 41350110331 and 41025017)+1 种基金the Chinese Academy of Sciences fellowship for young international scientists (Grant No. 2011Y2ZZB05)a China postdoctoral science foundation grant (Grant No. 2013M541010)
文摘Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb wave activity fluxes.The planetary wave propagation can clearly be seen in the longitude-height and latitude-height sections of the Plumb wave activity flux and EP flux,respectively,when the stratospheric basic state is partially reflective.Primarily,a wave packet emanating from Baffin Island/coast of Labrador propagated eastward,equatorward and was reflected over Central Eurasia and parts of China,which in turn triggered the advection of cold wind from the northern part of the boreal forest regions and Siberia to the subtropics.The wide region of Central Eurasia and China experienced extreme cold weather during the second ten days of January 2008,whereas the extraordinary persistence of the event might have occurred due to an anomalous blocking high in the Urals-Siberia region.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.41350110331 and 41450110431)the China Postdoctoral Science Foundation(Grant No.2013M541010)
文摘Planetary wave reflection from the stratosphere played a significant role in changing the tropospheric circulation pattern over Eurasia in mid-January 2008. We studied the 2008 event and compared with composite analysis (winters of 2002/2003, 200412005, 200612007, 200712008, 201012011 and 2011/2012), when the downward coupling was stronger, by employing time-lagged singular value decomposition analysis on the geopotential height field. In the Northern Hemisphere, the geopo- tential fields were decomposed into zonal mean and wave components to compare the relative covariance patterns. It was found that the wavenumber 1 (WN1) component was dominant compared with the wavenumber 2 (WN2) component and zonal mean process. For the WNI field, the covariance was much higher (lower) for the negative (positive) lag, with a prominent peak around +15 days when the leading stratosphere coupled strongly with the troposphere. It contributed to the downward coupling due to reflection, when the stratosphere exhibited a partially reflective background state. We also analyzed the evolution of the WNI anomaly and heat flux anomaly, both in the troposphere and stratosphere, during January- March 2008. The amplitude of the tropospheric WN 1 pattern reached a maximum and was consistent with a downward wave coupling event influenced by the stratospheric WN1 anomaly at 10 hPa. This was consistent with the reflection of the WN1 component over Eurasia, which triggered an anomalous blocking high in the Urals-Siberia region. We further clarified the impact of reflection on the tropospheric WNI field and hence the tropospheric circulation pattern by changing the propagation direction during and after the event.
文摘Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In order to verify the prediction efficacy and accuracy of the seismic wave reflection method with different instruments and equipment(tunnel geological prediction[TGP]/tunnel seismic prediction[TSP])and different vibration modes(hammering,explosives),a comparison test was carried out in Jinping Tunnel.The test results showed that the time-consumption of the hammering source was short,which can greatly reduce the impact on the construction site;different vibration sources methods of seismic wave reflection can predict the unfavorable geological sections accurately.
文摘The wave reflection coefficient frequency spectrum and directional spectrum for concrete face slope breakwaters and rubble mound breakwaters are investigated through physical model tests in the present study. The reflection coefficients of oblique irregular waves are analyzed by the Modified Two-Point Method (MTPM) proposed by the authors. The results show that the wave reflection coefficient decreases with increasing wave frequency and incident angle or decreasing structure slope. The reflection coefficient frequency spectrum and its variation with Iribarren number are given in this paper. The paper also suggests an empirical 3-dimensional reflection coefficient spectrum, i.e. reflection coefficient directional spectrum, which can be used to illustrate quantitatively the variation of reflection coefficient with the incident angle and the Iribarren number for oblique irregular waves.
文摘Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged structures include a submerged horizontal plate, submerged breakwa ters (rectangular and trapezoidal) and a step-type structure (topography). First, the BFC method is ver ified by comparing the computed results with the experimental data, including wave surface elevations, reflected and transmitted wave heights, and amplitudes of higher harmonics, showing that the method is a reasonable one to predict wave deformations due to the submerged structures. Secondly, the wave sur face elevations and the higher harmonics over different submerged structures are compared. Thirdly, re flected and transmitted waves due to different submerged structures are investigated.
基金financially supported by the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-bshX0043)POWERCHINA Science and Technology Project(Grant No.DJ-ZDXM-2022-28)Yunnan Fundamental Research Projects(Grant No.202401CF070042).
文摘In channel reservoirs,a quantitative characterization of landslide-generated impulse wave-structure interactions is essential for evaluating potential damage to infrastructure and dams.In this study,the problem of landslide-generated impulse waves that attack a vertical wall was investigated in a wave channel via a smooth particle hydrodynamics(SPH)method coupled with a Chrono model.The results indicated that the longitudinal velocity beneath the leading wave crest of an incident impulse wave deviated significantly from solitary wave theory.Moreover,the variation rate in the vertical velocity along the water column coincided with the theoretical prediction only for small wave amplitudes.Nevertheless,the maximum run-up height of an impulse wave can be accurately predicted via the solitary wave theory.Moreover,the maximum wall force during impulse wave-wall interaction was significantly larger than that during solitary wave reflection,particularly for high incident wave amplitudes.Overall,the present study demonstrated some striking differences in the interactions of landslide-generated impulse waves and solitary waves with a vertical wall.
基金supported by the National Natural Science Foundation of China(Nos.U20A2069,62376234 and 123B2037)the Advanced Aero-Power Innovation Workstation,China(No.HKCX2024-01-017)。
文摘The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and solves the unsteady axisymmetric Euler equation to study the characteristics of the Axisymmetric Inward Turning Curved Detonation Wave(AIT-CDW)flow field and the parameters affecting the stability of the wave system structure of AIT-CDW flow field.The numerical results demonstrate a radial compression effect in the AIT-CDW flow field.This effect causes the detonation wave to have a shorter initiation length than oblique detonation wave flow field and the detonation wave angle to gradually increase with the flow direction postdetonation.The AIT-CDW flow field is confined space,making it prone to normal detonation waves when the detonation wave reflects from the wall.This phenomenon is detrimental to the stability of the wave system structure in the flow field.It has been observed that increasing the center body radius and decreasing the fuel equivalent ratio can effectively reduce the height of the normal detonation wave or even eliminate it.Additionally,a well-designed generatrix shape of the center body can enhance airflow,reduce choked flow,and promote the stability of the wave structure in the flow field.
基金by Joint Fund of the National Natural Science Foundation of China the Hong Kong Science Research Bureau (49910161985)+1 种基金the National Natural Science Foundation of China (50025924,50179004)the Research Fund for the Development of harbor engineeri
文摘The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to expand velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with experimental data. The effect of porosity, the relative chamber width, the relative water depth in the wave absorbing chamber and the water depth in front of the structure are discussed.
基金the Yildiz Technical University Research Fund for financially supporting this work
文摘In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perforated thin Plexiglas plates of various porosities. The plate is placed perpendicular to the flume with the height from the flume bottom to the position above water surface. With this thin wall in the flume wave overtopping is prohibited and incident waves are able to transmit. The porosities of the walls are achieved by perforating the plates with circular holes. Model settings with double perforated walls parallel to each other forming so called chamber system, have been also examined. Several parameters have been used for correlating the laboratory tests’ results. Experimental data are also compared with results from the numerical model by applying the multi-domain boundary element method (MDBEM) with linear wave theory. Wave energy dissipation due to the perforations of the thin wall has been represented by a simple yet effective porosity parameter in the model. The numerical model with the MDBEM has been further validated against the previously published data.
文摘An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.
基金supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(PHR(IHLB))(Grant No.PHR201107145)
文摘Through solving the Zoeppritz's partial derivative equations, we have obtained accurate partial derivatives of reflected coefficients of seismic wave with respect to Pand S-wave velocities.With those partial derivatives, a multi-angle inversion is developed for seismic wave velocities.Numerical examples of different formation models show that if the number of iterations goes over 10, the relative error of inversion results is less than 1%, whether or not there is interference among the reflection waves.When we only have the reflected seismograms of P-wave, and only invert for velocities of P-wave, the multi-angle inversion is able to obtain a high computation precision.When we have the reflected seismograms of both P-wave and VS-wave, and simultaneously invert for the velocities of P-wave and VS-wave, the computation precisions of VS-wave velocities improves gradually with the increase of the number of angles, but the computation precision of P-wave velocities becomes worse.No matter whether the reflected seismic waves from the different reflection interface are coherent or non-coherent, this method is able to achieve a higher computation precision.Because it is based on the accurate solution of the gradient of SWRCs without any additional restriction, the multi-angle inversion method can be applied to seismic inversion of total angles.By removing the difficulties caused by simplified Zoeppritz formulas that the conventional AVO technology struggles with, the multiangle inversion method extended the application range of AVO technology and improved the computation precision and speed of inversion of seismic wave velocities.
文摘The interactions between regular surface waves and a surface-pitching slotted barrier are investigated both analytically and experimentally. A quasi-linear theory is developed using the eigenfunction expansion method. The energy dissipation within the barriers is modeled by a quadratic friction factor, and an equivalent linear dissipation coefficient, which is depth-varying, wave-height dependent, is introduced to linearize the matching condition at the surface-pitching barrier. By comparing the theoretical results with laboratory experiments, it is shown that the present method can satisfactorily predict the variation of the reflection and transmission coefficients with wave height.
文摘When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.
基金financially supported by the National Natural Science Foundation of China(No.41374117)the‘973’Project of China(No.2011 CB201002)the Great and Special Projects of China(Nos.2011ZX05003-003,2011ZX05005-005-008HZ,and 2011ZX05006-002)
文摘Estimation of an accurate macro velocity model plays an important role in seismic imag- ing and model parameter inversion. Full waveform inversion (FWI) is the classical data-domain inver- sion method. However, the misfit function of FWI is highly nonlinear, and the local optimization cannot prevent convergence of the misfit function toward local minima. To converge to the global minimum, FWI needs a good initial model or reliable low frequency component and long offset data. In this article, we present a wave-equation-based reflection traveltime tomography (WERTT) method, which can pro- vide a good background model (initial model) for FWI and (least-square) pre-stack depth migration (LS-PSDM). First, the velocity model is decomposed into a low-wavenumber component (background velocity) and a high-wavenumber component (reflectivity). Second, the primary reflection wave is pre- dicted by wave-equation demigration, and the reflection traveltime is calculated by an automatic picking method. Finally, the misfit function of the 12-norm of the reflection traveltime residuals is mini- mized by a gradient-based method. Numerical tests show that the proposed method can invert a good background model, which can be used as an initial model for LS-PSDM or FWI.
基金funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.(363/130/1431)
文摘The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically.
文摘An exact analytic solution for wave diffraction by wedge or corner with arbitrary angle (rπ) and reflection coefficients (R0 and Rr) is presented in this paper. It is expressed in two forms-series and integral representations, corresponding recurrence relation and asymptotic expressions are also derived. The solution is simplified for some special cases of rπ. For Rr= R0,r= 1/N and Rr≠R0,r = 1/2N, the solution can be reduced to linear superpositions of incident and partially reflected waves, hence a nonlinear solution of forth order for this problem can be obtained by using the author's theory of nonlinear interaction among gravity surface waves. The given solution is related to inhomogeneous Robin boundary conditions, which include the Neumann boundary conditions usually accepted in wave diffraction theory.
基金supported by the National Natural Science Foundation of China(Grant No.42174157)the CAGS Research Fund(Grant No.JKY202216)the Chinese Geological Survey Project(Grant Nos.DD20230008,DD20233002).
文摘The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.
文摘According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is proposed. Different reflection tests are conducted to check the theoretical analysis. A modified method to estimate the reflection coefficient at varied water depths is suggested based on the linear wave theory. The study indicates that the reflection coefficient from mild beaches has a changing trend for short waves approaching shoreline.
文摘In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275156,11547304 and 11505261
文摘Reflections of a Korteweg-de Vries (KdV) solitary wave and an envelope solitary wave are studied by using the particle-in-cell simulation method. Defining the phase shift of the reflected solitary wave, we notice that there is a phase shift of the reflected KdV solitary wave, while there is no phase shift for an envelope solitary wave. It is also noted that the reflection of a KdV solitary wave at a solid boundary is equivalent to the head-on collision between two identical amplitude solitary waves.