This study applies Ensemble Optimal Interpolation(EnOI)to assimilate individual spectral components derived from National Data Buoy Center(NDBC)buoy directional spectra into the WAVEWATCHⅢ(WW3)wave model during tropi...This study applies Ensemble Optimal Interpolation(EnOI)to assimilate individual spectral components derived from National Data Buoy Center(NDBC)buoy directional spectra into the WAVEWATCHⅢ(WW3)wave model during tropical cyclone(TC)Isaias(2020).The analysis provides a comprehensive evaluation of the assimilation’s impact on wave parameters,frequency spectra,and directional spectra.Two series of assimilation experiments—one based on spectral components(Exp^(*)-DaSpec)and the other on significant wave height(Exp^(*)-DaSWH)—are evaluated against a non-assimilated control run(Exp-NoDa).Particular focus is placed on six key parameters:SWH,mean wave period(MWP),mean wave direction(MWD),mean wave directional spread(MWS),dominant wave period(DWP),and dominant wave direction(DWD).Sensitivity analyses suggest 400 km and 0.30 as appropriate values for the localization radius and observation error variance,respectively,though no single setting is optimal across all wave parameters.Exp4-DaSWH and Exp4-DaSpec are therefore selected as representative experiments.In non-independent validation,Exp4-DaSpec generally outperforms Exp-NoDa across MWP,MWD,MWS,DWP,and DWD,demonstrating closer agreement with observed frequency spectra and directional patterns.In independent validation,Exp4-DaSpec maintains superior overall performance,whereas Exp4-DaSWH shows only limited improvement.Exp4-DaSWH may capture the spectral peak near 0.1 Hz,although its directional characteristics remain largely similar to those of Exp-NoDa.Importantly,the assimilation experiments significantly improve SWH in both non-independent and independent validations,with Exp4-DaSWH slightly outperforming Exp4-DaSpec overall.展开更多
The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equati...The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equations and source functions.展开更多
In this paper the parameterizational approach of nonlinear source function and the implicit scheme of the model are discussed in detail. The matching problem is solved between time and space steps using the characteri...In this paper the parameterizational approach of nonlinear source function and the implicit scheme of the model are discussed in detail. The matching problem is solved between time and space steps using the characteristics inlaid scheme with very strong physical meaning. The computational comparison in typical winds shows some improvements to the WAM model. That the hindcast results of the model for typhoon cases are in good agreement with real data illustrates its applicability to wave forecast and engineering study.展开更多
The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This p...The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper.展开更多
Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the character...Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.展开更多
Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity ...Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity of earth media,SEM for elastic media is no longer appropriate.On fundamental of the second-order elastic SEM,this work takes the viscoelastic wave equations and the vertical transversely isotropic(VTI) media into consideration,and establishes the second-order SEM for wave modeling in viscoelastic VTI media.The second-order perfectly matched layer for viscoelastic VTI media is also introduced.The problem of handling the overlapped absorbed corners is solved.A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling.Furtherly,numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media.This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.展开更多
The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predic...The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated.展开更多
Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood rou...Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions.展开更多
The studied area is located in the northwestern Morocco. It occupies a 2.5 km long of coastline on the Atlantic shore. It is oriented NNE-SSW, clearly exposed to the dominant swells coming from west to northwest. The ...The studied area is located in the northwestern Morocco. It occupies a 2.5 km long of coastline on the Atlantic shore. It is oriented NNE-SSW, clearly exposed to the dominant swells coming from west to northwest. The aim of this study is to determine the capacity of the waves that hit the shore to transport the sediments. To achieve our goal we chose a methodology that combines field sampling and laboratory analysis with digital modeling. In the first phase we sampled sediments from the study area along and across the beach line, dry sieving was used to determine the grain size distribution and the statistics derived from the sand samples were used to determine the critical shield stress (z'cr, b) also to investigate the spatial variability and influence of transport on grain size characteristics. As for the second phase, we intended to create a wave climate modeling based on nautical chart, using ArcGIS then Matlab that allowed us to obtain the Swan model for the area. The correlation between those results showed the degree of contribution of wave in the distribution of sediments along the shore.展开更多
In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are anal...In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are analyzed using the bifurcation theory of dynamical systems. The exact parametric representations of four types of traveling wave solutions are obtained.展开更多
The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea...The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea(SCS) was evaluated. A blended wind field, consisting of an interior domain based on Fujita's model and an exterior domain based on Takahashi's model, was used as the driving wind field. The waves driven by Typhoon Kai-tak over the SCS that occurred in 2012 were selected for the numerical simulation research. Sensitivity analyses of time step, grid resolution, and angle resolution were performed in order to obtain optimal model settings. Through sensitivity analyses, it can be found that the time step has a large influence on the results, while grid resolution and angle resolution have a little effect on the results.展开更多
In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects ...In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air-sea-wave model, a set of idealized simulations was applied to investigate the effects of air-sea-wave interaction in the upper ocean. Results show that air-wave coupling can strengthen tropical cyclones while air-sea coupling can weaken them; and air-sea-wave coupling is comparable to that of air-sea coupling, as the intensity is almost unchanged with the wave model coupled to the air-sea coupled model.The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature(SST) decreases in the upper ocean in the air-sea coupled model. Air-wave coupling strengthens the air-sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air-sea heat exchange: the air-sea-wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths.With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases.展开更多
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoo...Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.展开更多
A numerical model for wave propagation in a harbour is verified by use of physical models. The extended time-dependent mild slope equation is employed as the governing equation, and the model is solved by use of ADI m...A numerical model for wave propagation in a harbour is verified by use of physical models. The extended time-dependent mild slope equation is employed as the governing equation, and the model is solved by use of ADI method containing the relaxation factor. Firstly, the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests, and it is regarded as the basis for simulating partial reflection boundaries of the numerical model. Then model tests on refraction, diffraction and reflection of waves in a harbour are performed to measure wave height distribution. Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.展开更多
The impulse waves induced by large-reservoir landslides can be characterized by a low Froude number.However,systematic research on predictive models specifically targeting the initial primary wave is lacking.Taking th...The impulse waves induced by large-reservoir landslides can be characterized by a low Froude number.However,systematic research on predictive models specifically targeting the initial primary wave is lacking.Taking the Shuipingzi 1#landslide that occurred in the Baihetan Reservoir area of the Jinsha River in China as an engineering example,this study established a large-scale physical model(with dimensions of 30 m×29 m×3.5 m at a scale of 1:150)and conducted scaled experiments on 3D landslide-induced impulse waves.During the process in which a sliding mass displaced and compressed a body of water to generate waves,the maximum initial wave amplitude was found to be positively correlated with the sliding velocity and the volume of the landslide.With the increase in the water depth,the wave amplitude initially increased and then decreased.The duration of pressure exertion by the sliding mass at its maximum velocity directly correlated with an elevated wave amplitude.Based on the theories of low-amplitude waves and energy conservation,while considering the energy conversion efficiency,a predictive model for the initial wave amplitude was derived.This model could fit and validate the functions of wavelength and wave velocity.The accuracy of the initial wave amplitude was verified using physical experiment data,with a prediction accuracy for the maximum initial wave amplitude reaching 90%.The conversion efficiency(η)directly determined the accuracy of the estimation formula.Under clear conditions for landslide-induced impulse wave generation,estimating the value ofηthrough analogy cases was feasible.This study has derived the landslide-induced impulse waves amplitude prediction formula from the standpoints of wave theory and energy conservation,with greater consideration given to the intrinsic characteristics in the formation process of landslide-induced impulse waves,thereby enhancing the applicability and extensibility of the formula.This can facilitate the development of empirical estimation methods for landslide-induced impulse waves toward universality.展开更多
It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner mod...It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner model, its improvement is reflected in the horizontal motion which includes an explicit drift term. On the one hand, the depth-decay factor for the new drift accords well with that of the particle’s horizontal velocity. It is more rational than that of Stokes drift. On the other hand, the new formula needs no Taylor expansion as for Stokes drift and is applicable for the waves with big slopes. In addition, the new formula can also yield a more rational magnitude for the surface drift than that of Stokes.展开更多
New version of SWAN model includes the wave diffraction effect which is the main improvement compared with the previous versions. Experimental data collected in the wave basin of the University of Delaware were used t...New version of SWAN model includes the wave diffraction effect which is the main improvement compared with the previous versions. Experimental data collected in the wave basin of the University of Delaware were used to test its performance. Wave heights were compared in the four cases (with different wave energies and directional spreading spectra). The results agreed well with the measurements, especially for the broad directional spectra cases. The effect of wave diffraction was analyzed by switching on/off the corresponding tenn. By introducing the diffraction term, the distributions of wave height and wave direction were smoothed, especially obvious for the narrow spectrum cases. Compared with the calculations without diffraction, the model with diffraction effect gave better results.展开更多
Reasonably accurate predictions of wave heights, current and elevations during storm events are vital information for marine operations and design of offshore and coastal structures in the surrounding seas of Korea Pe...Reasonably accurate predictions of wave heights, current and elevations during storm events are vital information for marine operations and design of offshore and coastal structures in the surrounding seas of Korea Peninsula. Ocean circulation and wind-wave models have traditionally been run separately, but recent researches have identified potentially important interactions between current and wave motions. The coupled tide-surge and the WAM wave models at the atmospheric boundary layer and bottom boundary layer around the Korea Peninsula are applied for the Typhoon Maemi (0314) event. Communication between the models is aehievod using MPI. Results are compared with coastal tide gauges and moored wave buoys and comparisons are also made between wave computations from the coupled model and the independent third generation wave models. Results suggest that applying the fide-surge-coupled model can be an effective means of obtaining wave and storm surge predictions simultaneously.展开更多
To achieve high parallel efficiency for the global MASNUM surface wave model, the algorithm of an irregular quasirectangular domain decomposition and related serializing of calculating points and data exchanging schem...To achieve high parallel efficiency for the global MASNUM surface wave model, the algorithm of an irregular quasirectangular domain decomposition and related serializing of calculating points and data exchanging schemes are developed and conducted, based on the environment of Message Passing Interface(MPI). The new parallel version of the surface wave model is tested for parallel computing on the platform of the Sunway BlueLight supercomputer in the National Supercomputing Center in Jinan. The testing involves four horizontal resolutions, which are 1°×1°,(1/2)°×(1/2)°,(1/4)°×(1/4)°, and(1/8)°×(1/8)°. These tests are performed without data Input/Output(IO) and the maximum amount of processors used in these tests reaches to 131072. The testing results show that the computing speeds of the model with different resolutions are all increased with the increasing of numbers of processors. When the number of processors is four times that of the base processor number, the parallel efficiencies of all resolutions are greater than 80%. When the number of processors is eight times that of the base processor number, the parallel efficiency of tests with resolutions of 1°×1°,(1/2)°×(1/2)° and(1/4)°×(1/4)° is greater than 80%, and it is 62% for the test with a resolution of(1/8)°×(1/8)° using 131072 processors, which is the nearly all processors of Sunway BlueLight. When the processor's number is 24 times that of the base processor number, the parallel efficiencies for tests with resolutions of 1°×1°,(1/2)°×(1/2)°, and(1/4)°×(1/4)° are 72%, 62%, and 38%, respectively. The speedup and parallel efficiency indicate that the irregular quasi-rectangular domain decomposition and serialization schemes lead to high parallel efficiency and good scalability for a global numerical wave model.展开更多
Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simula...Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simulation results will be unrealistic. Therefore, a modified phase modulation method for simulating high nonlinear freak waves was developed. The surface elevations of some wave components at certain time and place are positive by modulating the corresponding random initial phases, then the total surface elevation at the focused point is enhanced and furthermore a freak wave event is generated. The new method can not only make the freak wave occur at certain time and place, but also make the simulated wave surface time series satisfy statistical properties of the realistic sea state and keep identical with the target wave spectrum. This numerical approach is of good precision and high efficiency by the comparisons of the simulated freak waves and the recorded freak waves.展开更多
基金The Youth Talent Support Program for Doctoral Students of the China Association for Science and Technologythe Key Laboratory of Space Ocean Remote Sensing and Application at Ministry of Natural Resources under contract No.2023CFO005+1 种基金the National Natural Science Foundation of China under contract No.42176011the Fundamental Research Funds for the Central Universities under contract No.24CX03001A.
文摘This study applies Ensemble Optimal Interpolation(EnOI)to assimilate individual spectral components derived from National Data Buoy Center(NDBC)buoy directional spectra into the WAVEWATCHⅢ(WW3)wave model during tropical cyclone(TC)Isaias(2020).The analysis provides a comprehensive evaluation of the assimilation’s impact on wave parameters,frequency spectra,and directional spectra.Two series of assimilation experiments—one based on spectral components(Exp^(*)-DaSpec)and the other on significant wave height(Exp^(*)-DaSWH)—are evaluated against a non-assimilated control run(Exp-NoDa).Particular focus is placed on six key parameters:SWH,mean wave period(MWP),mean wave direction(MWD),mean wave directional spread(MWS),dominant wave period(DWP),and dominant wave direction(DWD).Sensitivity analyses suggest 400 km and 0.30 as appropriate values for the localization radius and observation error variance,respectively,though no single setting is optimal across all wave parameters.Exp4-DaSWH and Exp4-DaSpec are therefore selected as representative experiments.In non-independent validation,Exp4-DaSpec generally outperforms Exp-NoDa across MWP,MWD,MWS,DWP,and DWD,demonstrating closer agreement with observed frequency spectra and directional patterns.In independent validation,Exp4-DaSpec maintains superior overall performance,whereas Exp4-DaSWH shows only limited improvement.Exp4-DaSWH may capture the spectral peak near 0.1 Hz,although its directional characteristics remain largely similar to those of Exp-NoDa.Importantly,the assimilation experiments significantly improve SWH in both non-independent and independent validations,with Exp4-DaSWH slightly outperforming Exp4-DaSpec overall.
文摘The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equations and source functions.
文摘In this paper the parameterizational approach of nonlinear source function and the implicit scheme of the model are discussed in detail. The matching problem is solved between time and space steps using the characteristics inlaid scheme with very strong physical meaning. The computational comparison in typical winds shows some improvements to the WAM model. That the hindcast results of the model for typhoon cases are in good agreement with real data illustrates its applicability to wave forecast and engineering study.
文摘The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper.
文摘Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.
基金financially supported by the National Natural Science Foundation of China (Grant No.41304077)Postdoctoral Science Foundation of China (Grant No.2013M531744,2014T70740)+1 种基金Key Laboratory of Geospace Environment and Geodesy (Grant No.12-02-03)Subsurface Multi-scale Imaging Laboratory (Grant No.SMIL-2014-01)
文摘Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity of earth media,SEM for elastic media is no longer appropriate.On fundamental of the second-order elastic SEM,this work takes the viscoelastic wave equations and the vertical transversely isotropic(VTI) media into consideration,and establishes the second-order SEM for wave modeling in viscoelastic VTI media.The second-order perfectly matched layer for viscoelastic VTI media is also introduced.The problem of handling the overlapped absorbed corners is solved.A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling.Furtherly,numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media.This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.
基金The National Natural Science Foundation of China under contract No.51979165。
文摘The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated.
文摘Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions.
文摘The studied area is located in the northwestern Morocco. It occupies a 2.5 km long of coastline on the Atlantic shore. It is oriented NNE-SSW, clearly exposed to the dominant swells coming from west to northwest. The aim of this study is to determine the capacity of the waves that hit the shore to transport the sediments. To achieve our goal we chose a methodology that combines field sampling and laboratory analysis with digital modeling. In the first phase we sampled sediments from the study area along and across the beach line, dry sieving was used to determine the grain size distribution and the statistics derived from the sand samples were used to determine the critical shield stress (z'cr, b) also to investigate the spatial variability and influence of transport on grain size characteristics. As for the second phase, we intended to create a wave climate modeling based on nautical chart, using ArcGIS then Matlab that allowed us to obtain the Swan model for the area. The correlation between those results showed the degree of contribution of wave in the distribution of sediments along the shore.
基金Project supported by the Foundation of Guangxi Key Laboratory of Trusted Software, the Guangxi Natural Science Foundation, China (Grant No. 2011GXNSFA018134)the National Natural Science Foundation of China (Grant Nos. 11161013 and 61004101)
文摘In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are analyzed using the bifurcation theory of dynamical systems. The exact parametric representations of four types of traveling wave solutions are obtained.
基金supported by the National Natural Science Foundation of China(Grants No.51239001,51179015,and 51509023)the Open Research Foundation of the Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation,the Ministry of Water Resources(Grant No.2018KJ03)+1 种基金the Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2017SS04)the Key Laboratory of Technology for Safeguarding of Maritime Rights and Interests and Application,State Oceanic Administration(Grant No.SCS1606)
文摘The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea(SCS) was evaluated. A blended wind field, consisting of an interior domain based on Fujita's model and an exterior domain based on Takahashi's model, was used as the driving wind field. The waves driven by Typhoon Kai-tak over the SCS that occurred in 2012 were selected for the numerical simulation research. Sensitivity analyses of time step, grid resolution, and angle resolution were performed in order to obtain optimal model settings. Through sensitivity analyses, it can be found that the time step has a large influence on the results, while grid resolution and angle resolution have a little effect on the results.
基金"973"Project(2013CB430305)Special Scientific Research Fund of Meteorological Public Welfare of China(GYHY201206006,GYHY 201106004)Shanghai Meteorological Service(TD201403)
文摘In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air-sea-wave model, a set of idealized simulations was applied to investigate the effects of air-sea-wave interaction in the upper ocean. Results show that air-wave coupling can strengthen tropical cyclones while air-sea coupling can weaken them; and air-sea-wave coupling is comparable to that of air-sea coupling, as the intensity is almost unchanged with the wave model coupled to the air-sea coupled model.The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature(SST) decreases in the upper ocean in the air-sea coupled model. Air-wave coupling strengthens the air-sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air-sea heat exchange: the air-sea-wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths.With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases.
基金This project is supported bythe Canadian Panel on Energy Research and Development (Offshore Environmental Fac-tors Program) , ONR (US Office of Naval Research) via GoMOOS-the Gulf of Maine Ocean Observing System,Petroleum Research Atlantic Canada (PRAC) ,and the CFCAS (Canada Foundation for Climate and AtmosphericStudies) ,Canadian Panel on Energy Research and Development (Offshore Environmental Factors Program) .It is al-so supported bythe Advanced Doctoral Fund of the Ministry of Education of China (Grant No.20030294010)
文摘Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.
文摘A numerical model for wave propagation in a harbour is verified by use of physical models. The extended time-dependent mild slope equation is employed as the governing equation, and the model is solved by use of ADI method containing the relaxation factor. Firstly, the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests, and it is regarded as the basis for simulating partial reflection boundaries of the numerical model. Then model tests on refraction, diffraction and reflection of waves in a harbour are performed to measure wave height distribution. Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.
基金The authors would like thank LI Renjiang and HU Bin from the China Three Gorges Corporation for providing many valuable suggestions for the establishment of the physical models.This work was supported by the National Natural Science Foundation of China(No.U23A2045)the China Three Gorges Corporation(YM(BHT)/(22)022)the Scientific Research Project of Chongqing Municipal Bureau of Planning and Natural Resources(Evaluation and Reinforcement Technology of Surge Disaster Caused by High and Steep Dangerous Rocks in Chongqing Reservoir Area of the Three Gorges Project,KJ-2023046).
文摘The impulse waves induced by large-reservoir landslides can be characterized by a low Froude number.However,systematic research on predictive models specifically targeting the initial primary wave is lacking.Taking the Shuipingzi 1#landslide that occurred in the Baihetan Reservoir area of the Jinsha River in China as an engineering example,this study established a large-scale physical model(with dimensions of 30 m×29 m×3.5 m at a scale of 1:150)and conducted scaled experiments on 3D landslide-induced impulse waves.During the process in which a sliding mass displaced and compressed a body of water to generate waves,the maximum initial wave amplitude was found to be positively correlated with the sliding velocity and the volume of the landslide.With the increase in the water depth,the wave amplitude initially increased and then decreased.The duration of pressure exertion by the sliding mass at its maximum velocity directly correlated with an elevated wave amplitude.Based on the theories of low-amplitude waves and energy conservation,while considering the energy conversion efficiency,a predictive model for the initial wave amplitude was derived.This model could fit and validate the functions of wavelength and wave velocity.The accuracy of the initial wave amplitude was verified using physical experiment data,with a prediction accuracy for the maximum initial wave amplitude reaching 90%.The conversion efficiency(η)directly determined the accuracy of the estimation formula.Under clear conditions for landslide-induced impulse wave generation,estimating the value ofηthrough analogy cases was feasible.This study has derived the landslide-induced impulse waves amplitude prediction formula from the standpoints of wave theory and energy conservation,with greater consideration given to the intrinsic characteristics in the formation process of landslide-induced impulse waves,thereby enhancing the applicability and extensibility of the formula.This can facilitate the development of empirical estimation methods for landslide-induced impulse waves toward universality.
文摘It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner model, its improvement is reflected in the horizontal motion which includes an explicit drift term. On the one hand, the depth-decay factor for the new drift accords well with that of the particle’s horizontal velocity. It is more rational than that of Stokes drift. On the other hand, the new formula needs no Taylor expansion as for Stokes drift and is applicable for the waves with big slopes. In addition, the new formula can also yield a more rational magnitude for the surface drift than that of Stokes.
基金This study was supported by the National Key Basic Research Project of China (Grant No2002CB412403)the Research Project in Science and Technology Commission of Shanghai Municipality,China (Grant No04DZ12049)
文摘New version of SWAN model includes the wave diffraction effect which is the main improvement compared with the previous versions. Experimental data collected in the wave basin of the University of Delaware were used to test its performance. Wave heights were compared in the four cases (with different wave energies and directional spreading spectra). The results agreed well with the measurements, especially for the broad directional spectra cases. The effect of wave diffraction was analyzed by switching on/off the corresponding tenn. By introducing the diffraction term, the distributions of wave height and wave direction were smoothed, especially obvious for the narrow spectrum cases. Compared with the calculations without diffraction, the model with diffraction effect gave better results.
文摘Reasonably accurate predictions of wave heights, current and elevations during storm events are vital information for marine operations and design of offshore and coastal structures in the surrounding seas of Korea Peninsula. Ocean circulation and wind-wave models have traditionally been run separately, but recent researches have identified potentially important interactions between current and wave motions. The coupled tide-surge and the WAM wave models at the atmospheric boundary layer and bottom boundary layer around the Korea Peninsula are applied for the Typhoon Maemi (0314) event. Communication between the models is aehievod using MPI. Results are compared with coastal tide gauges and moored wave buoys and comparisons are also made between wave computations from the coupled model and the independent third generation wave models. Results suggest that applying the fide-surge-coupled model can be an effective means of obtaining wave and storm surge predictions simultaneously.
基金supported by National Basic Research Program of China (Grant Nos. 2010CB950300, 2010CB950500)Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105019)+1 种基金Key Supercomputing Science-Technology Project of Shandong Province of China (Grant No. 2011YD01107)Scientific Research Foundation of the First Institute of Oceanography, State Oceanic Administration (Grant No. GY02-2010G22)
文摘To achieve high parallel efficiency for the global MASNUM surface wave model, the algorithm of an irregular quasirectangular domain decomposition and related serializing of calculating points and data exchanging schemes are developed and conducted, based on the environment of Message Passing Interface(MPI). The new parallel version of the surface wave model is tested for parallel computing on the platform of the Sunway BlueLight supercomputer in the National Supercomputing Center in Jinan. The testing involves four horizontal resolutions, which are 1°×1°,(1/2)°×(1/2)°,(1/4)°×(1/4)°, and(1/8)°×(1/8)°. These tests are performed without data Input/Output(IO) and the maximum amount of processors used in these tests reaches to 131072. The testing results show that the computing speeds of the model with different resolutions are all increased with the increasing of numbers of processors. When the number of processors is four times that of the base processor number, the parallel efficiencies of all resolutions are greater than 80%. When the number of processors is eight times that of the base processor number, the parallel efficiency of tests with resolutions of 1°×1°,(1/2)°×(1/2)° and(1/4)°×(1/4)° is greater than 80%, and it is 62% for the test with a resolution of(1/8)°×(1/8)° using 131072 processors, which is the nearly all processors of Sunway BlueLight. When the processor's number is 24 times that of the base processor number, the parallel efficiencies for tests with resolutions of 1°×1°,(1/2)°×(1/2)°, and(1/4)°×(1/4)° are 72%, 62%, and 38%, respectively. The speedup and parallel efficiency indicate that the irregular quasi-rectangular domain decomposition and serialization schemes lead to high parallel efficiency and good scalability for a global numerical wave model.
基金The Key Technology Program,the Ministry of Education of China under contract No.104061
文摘Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simulation results will be unrealistic. Therefore, a modified phase modulation method for simulating high nonlinear freak waves was developed. The surface elevations of some wave components at certain time and place are positive by modulating the corresponding random initial phases, then the total surface elevation at the focused point is enhanced and furthermore a freak wave event is generated. The new method can not only make the freak wave occur at certain time and place, but also make the simulated wave surface time series satisfy statistical properties of the realistic sea state and keep identical with the target wave spectrum. This numerical approach is of good precision and high efficiency by the comparisons of the simulated freak waves and the recorded freak waves.