期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Wind Turbine Wake Characteristics in Uniform Inflow 被引量:2
1
作者 Li Rennian Ma Ruijie +2 位作者 Li Deshun Li Yinran Wang Chengze 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期45-52,共8页
Flow field around a two-bladed horizontal-axis wind turbine(HAWT)is simulated at various tip speed ratios to investigate its wake characteristics by analyzing the tip and root vortex trajectories in the nearwake,as we... Flow field around a two-bladed horizontal-axis wind turbine(HAWT)is simulated at various tip speed ratios to investigate its wake characteristics by analyzing the tip and root vortex trajectories in the nearwake,as well as the vertical profiles of the axial velocity.Results show that the pitch of the tip vortex varies inversely with the tip speed ratio.Radial expansion of the tip vortices becomes more obvious as the tip speed ratio increases.Tip vortices shed not exactly from the blade tip but from the blade span of 96.5%—99%radius of the rotor.The axial velocity profiles are transformed into V-shape from W-shape at the distance downstream of eight rotor diameters due to the momentum recovery. 展开更多
关键词 horizontal-axis wind turbine(HAWT) wake characteristics tip speed ratio vortex trajectory
在线阅读 下载PDF
EXPERIMENTAL INVESTIGATION OF TIP CLEARANCE FLOW FOR AN AXIAL FLOW FAN ROTOR 被引量:5
2
作者 GUO Qiang ZHU Xiaocheng DU Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期376-382,共7页
The flow field in the tip region of an axial ventilation fan is investigated with a particle image velocimeter (PIV) system at the design condition. Flow fields with three different tip clearances are surveyed on th... The flow field in the tip region of an axial ventilation fan is investigated with a particle image velocimeter (PIV) system at the design condition. Flow fields with three different tip clearances are surveyed on three different circumferential planes, respectively. The phase-locked average method is used to investigate the generation and the development of a tip leakage vortex. The result from PIV system is compared with that from a particle dynamics anemometer(PDA) system. Both data are in good agreement and the structure of the tip leakage vortex for the rotor is illustrated. The characteristic of a leakage vortex is described in both velocity vectors and vortical contours. The unsteadiness of the leakage vortex and the position of the vortex are surveyed in detail, which interprets the discrepancy between the numerical simulation and PDA experimental results to a certain extent. The center loci of tip leakage vortex at different times and the mean center loci of the leakage vortex are displayed particularly. Finally, the trajectories of the tip leakage vortex by the experimental measurement are compared with predictions from the existing models for high speed and high-pressure compressors and turbines when appropriately interpreted. A good agreement is obtained. 展开更多
关键词 Axial ventilation fan Tip leakage vortex Particle image velocimetry (PIV) vortex center trajectory
在线阅读 下载PDF
THE GENERAL PROPERTIES OF THE SPHERICAL VORTICES(SV)OF n-TH ORDER AND THE CHAOTIC PHENOMENA AND OF THE ORDERED STRUCTURES OF THE SV OF 3RD ORDER 被引量:1
3
作者 是长春 黄永念 +1 位作者 叶弋 江涛 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第4期353-358,共6页
The general properties of the spherical vortices(SV)of n-th order are discussedin this paper Numerical calculations are carried out in the case of n=3.We find outsome interesting phenomena concerning the chaotic regio... The general properties of the spherical vortices(SV)of n-th order are discussedin this paper Numerical calculations are carried out in the case of n=3.We find outsome interesting phenomena concerning the chaotic regions and ordered islands on the Poincare sections. Interpretations of these phenomena are also given. 展开更多
关键词 Beltrami flow. spherical vortex. general properties. Poincare sec-tion. chaotic trajectory. ordered island. numerical calculation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部