A numerical study is presented on roll damping of ships by solving Navier-Stokes equation. Two Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-like cross sections are nume...A numerical study is presented on roll damping of ships by solving Navier-Stokes equation. Two Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-like cross sections are numerically simulated by use of the computational scheme previously developed by the authors. The numerical results show that the location of the vortices is very similar to the existing experimental result. For comparison of vortex patterns and roll damping on various ship-like cross sections, various distributions of shear stress and pressure on the rolling ship hull surface are presented in this paper. It is found that there are two vortices around the midship-like section and there is one vortex around the fore or stern section. Based on these simulation results, the roll damping of a ship including viscous effects is calculated. The contribution of pressure to the roll moment is larger than the contribution of frictional shear stress.展开更多
Vortex patterns of dust particles have been observed in a magnetized dusty plasma system. The formation mechanism of two-dimensional (2D) vortex patterns has been investigated by analysing the forces acting on dust ...Vortex patterns of dust particles have been observed in a magnetized dusty plasma system. The formation mechanism of two-dimensional (2D) vortex patterns has been investigated by analysing the forces acting on dust particles and molecular dynamics (MD) simulations in a 2D confined magnetized dusty plasma. It has been found that with a weak confining electric field and a strong magnetic field, the particles' trajectories will form a vortex shape. The simulation results agree with our experimental observations. In our experiments, vortex patterns can be induced via circular rotation of particles by changing the rf (radio-frequency) power in a magnetized dusty plasma.展开更多
We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-...We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He^(+)with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.展开更多
The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the hole...The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects.In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III,the typical Kármán vortices partially or totally disappear,and some new vortex shedding patterns appear, such as-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.展开更多
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and...By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.展开更多
The use of leading edge with different geometrical patterns will affect the development of boundary layer flow on a flat plate and its heat transfer properties. In this work, the effects of three patterns namely saw-t...The use of leading edge with different geometrical patterns will affect the development of boundary layer flow on a flat plate and its heat transfer properties. In this work, the effects of three patterns namely saw-tooth, semicircular and slots with same wavelength and amplitude were examined. The experiments were carried out for Reynolds number based on wavelength of patterns ranging from 1540 to 3850. For all cases, after each valley, an oval shape region was formed containing a counter- rotating vortex pair. It is also shown that for the flat plate with slots, another vortex was visualized between each valley.展开更多
Vortex-shedding flow induced by the vertical oscillation of a cylinder with bottom-attached disks of different diameter ratio Dd/Dc and thickness ratio td/Dc is studied by a 3D (three-dimensional) numerical model de...Vortex-shedding flow induced by the vertical oscillation of a cylinder with bottom-attached disks of different diameter ratio Dd/Dc and thickness ratio td/Dc is studied by a 3D (three-dimensional) numerical model developed in this paper, and compared with the results obtained through 2D (two-dimensional) numerical model. The high-order upwind scheme is applied to stabilize the computation, and convergence is accelerated by the multi-grid method. Qualitative and quantitative analyses of the differences between the 2D and 3D simulation results reveal the 3D effect on the flow field characteristics and hydrodynamic coefficients of the vertically oscillating cylinder with a bottom-attached disk. The 3D effect on the fluid field is mainly reflected in the significance of three vortex-shedding patterns: ωx has a greater effect on the flow fields around the sharp edges relative to the vortices generated in the 2D simulation. In the slice along the axial orientation, the vortex effect of ωy along the radial axis is smaller than that of ωx along the circumferential direction, indicating the radial effect on the velocity more pronounced than the circumferential effect around the sharp edges of the disk. The rotational interaction ωz of the fluid in the horizontal plane during the heave motion is insignificant. Based on the 2D and 3D simulation results, the turning points that separate the increasing regimes of the added mass coefficient and damping ratio are identified. The dependence of the turning point on the diameter ratio Dd/Dc and thickness ratio td/Dc are discussed in detail.展开更多
To determine the type of surface roughness pattern that is suitable for adaptive suppression of the drag of an obstacle, we observed flow structures introduced by such obstacles. Several roughness patterns were tested...To determine the type of surface roughness pattern that is suitable for adaptive suppression of the drag of an obstacle, we observed flow structures introduced by such obstacles. Several roughness patterns were tested: geometric patterns, fractal patterns, reptile-skin patterns, and patterns of circular cylinders arranged in a lattice and in a zigzag manner. A suitable pattern for adaptive control of flow is one that generates longitudinal vortices with nonconstant distances. The preferred instability mode of a laminar boundary layer is expected to be selected automatically from fluctuations involving many frequencies and caused by fractal patterns. Snake- and reptile-skin patterns may have a similar ability as fractal patterns because they consist of multiscale patterns. The longitudinal vortices generated from peculiar positions and concave corners in patterns were observed. The distance between these vortices is not constant because the onset of vortices is at concave corners in fractal patterns. These vortices have differing strengths and easily cause nonlinear interactions, so they can disturb a laminar boundary layer with several higher-harmonic frequencies. The velocity profiles of the laminar boundary-layer flow over the fractal patterns were measured by using hydrogen bubbles. The results show the down-wash flow between the longitudinal vortices, which means that the vortices may effectively suppress the boundary layer separation in an adverse pressure gradient.展开更多
The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack...The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed.展开更多
文摘A numerical study is presented on roll damping of ships by solving Navier-Stokes equation. Two Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-like cross sections are numerically simulated by use of the computational scheme previously developed by the authors. The numerical results show that the location of the vortices is very similar to the existing experimental result. For comparison of vortex patterns and roll damping on various ship-like cross sections, various distributions of shear stress and pressure on the rolling ship hull surface are presented in this paper. It is found that there are two vortices around the midship-like section and there is one vortex around the fore or stern section. Based on these simulation results, the roll damping of a ship including viscous effects is calculated. The contribution of pressure to the roll moment is larger than the contribution of frictional shear stress.
基金'the Research Start-Up Fund of China Agricultural University(No.2005057)
文摘Vortex patterns of dust particles have been observed in a magnetized dusty plasma system. The formation mechanism of two-dimensional (2D) vortex patterns has been investigated by analysing the forces acting on dust particles and molecular dynamics (MD) simulations in a 2D confined magnetized dusty plasma. It has been found that with a weak confining electric field and a strong magnetic field, the particles' trajectories will form a vortex shape. The simulation results agree with our experimental observations. In our experiments, vortex patterns can be induced via circular rotation of particles by changing the rf (radio-frequency) power in a magnetized dusty plasma.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074142)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)the Graduate Innovation Fund of Jilin University,China(Grant No.101832020CX337)。
文摘We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He^(+)with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.
基金supported by the National Key Scientific Instrument and Equipment Development Program of China (Grant 2011YQ120048)
文摘The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects.In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III,the typical Kármán vortices partially or totally disappear,and some new vortex shedding patterns appear, such as-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.
文摘By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.
文摘The use of leading edge with different geometrical patterns will affect the development of boundary layer flow on a flat plate and its heat transfer properties. In this work, the effects of three patterns namely saw-tooth, semicircular and slots with same wavelength and amplitude were examined. The experiments were carried out for Reynolds number based on wavelength of patterns ranging from 1540 to 3850. For all cases, after each valley, an oval shape region was formed containing a counter- rotating vortex pair. It is also shown that for the flat plate with slots, another vortex was visualized between each valley.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51239007 and 51179077)the Sino-UK Higher Education Research Partnership for Ph.D.Studies
文摘Vortex-shedding flow induced by the vertical oscillation of a cylinder with bottom-attached disks of different diameter ratio Dd/Dc and thickness ratio td/Dc is studied by a 3D (three-dimensional) numerical model developed in this paper, and compared with the results obtained through 2D (two-dimensional) numerical model. The high-order upwind scheme is applied to stabilize the computation, and convergence is accelerated by the multi-grid method. Qualitative and quantitative analyses of the differences between the 2D and 3D simulation results reveal the 3D effect on the flow field characteristics and hydrodynamic coefficients of the vertically oscillating cylinder with a bottom-attached disk. The 3D effect on the fluid field is mainly reflected in the significance of three vortex-shedding patterns: ωx has a greater effect on the flow fields around the sharp edges relative to the vortices generated in the 2D simulation. In the slice along the axial orientation, the vortex effect of ωy along the radial axis is smaller than that of ωx along the circumferential direction, indicating the radial effect on the velocity more pronounced than the circumferential effect around the sharp edges of the disk. The rotational interaction ωz of the fluid in the horizontal plane during the heave motion is insignificant. Based on the 2D and 3D simulation results, the turning points that separate the increasing regimes of the added mass coefficient and damping ratio are identified. The dependence of the turning point on the diameter ratio Dd/Dc and thickness ratio td/Dc are discussed in detail.
文摘To determine the type of surface roughness pattern that is suitable for adaptive suppression of the drag of an obstacle, we observed flow structures introduced by such obstacles. Several roughness patterns were tested: geometric patterns, fractal patterns, reptile-skin patterns, and patterns of circular cylinders arranged in a lattice and in a zigzag manner. A suitable pattern for adaptive control of flow is one that generates longitudinal vortices with nonconstant distances. The preferred instability mode of a laminar boundary layer is expected to be selected automatically from fluctuations involving many frequencies and caused by fractal patterns. Snake- and reptile-skin patterns may have a similar ability as fractal patterns because they consist of multiscale patterns. The longitudinal vortices generated from peculiar positions and concave corners in patterns were observed. The distance between these vortices is not constant because the onset of vortices is at concave corners in fractal patterns. These vortices have differing strengths and easily cause nonlinear interactions, so they can disturb a laminar boundary layer with several higher-harmonic frequencies. The velocity profiles of the laminar boundary-layer flow over the fractal patterns were measured by using hydrogen bubbles. The results show the down-wash flow between the longitudinal vortices, which means that the vortices may effectively suppress the boundary layer separation in an adverse pressure gradient.
文摘The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed.