Casting magnesium alloys are highly heterogeneous materials inevitably containing numerous voids.These voids will evolve during material deformation and markedly affect material behaviors,so it is important to investi...Casting magnesium alloys are highly heterogeneous materials inevitably containing numerous voids.These voids will evolve during material deformation and markedly affect material behaviors,so it is important to investigate the equation of the void evolution and the constitutive relation involving the void evolution.By assuming the voids in casting magnesium alloys were spherical,the growth equation of the voids was obtained from the incompressibility and continuity conditions of material matrix. Through combining the obtained void-growth equation with the void-nucleation equation relative to the increment of intrinsic-time measure,the evolution equation of the voids was presented.By introducing the presented void-evolution equation to a nonclassical elastoplastic constitutive equation,a constitutive model involving the void evolution was put forward.The corresponding numerical algorithm and finite element procedure of the model were developed and applied to the analysis of the elastoplastic response and the porosity change of casting magnesium alloy ZL305.Computed results show satisfactory agreement with those of the corresponding experiments.展开更多
A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the ...A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the exact parametric form of integrals.展开更多
The void evolution equation and the elastoplastic constitutive model of casting magnesium alloy were investigated. The void evolution equation consists of the void growth and the void nucleation equations. The void gr...The void evolution equation and the elastoplastic constitutive model of casting magnesium alloy were investigated. The void evolution equation consists of the void growth and the void nucleation equations. The void growth equation was obtained based on the continuous supposition of the material matrix,and the void nucleation equation was derived by assuming that the void nucleation follows a normal distribution. A softening function related to the void evolution was given. After the softening function was embedded to a nonclassical elastoplastic constitutive equation,a constitutive model involving void evolution was obtained. The numerical algorithm and the finite element procedure related to the constitutive model were developed and applied to the analysis of the distributions of the stress and the porosity of the notched cylindrical specimens of casting magnesium alloy ZL305. The computed results show satisfactory agreement with the experimental data.展开更多
The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-la...The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.展开更多
基金Project(10872221)supported by the National Natural Science Foundation of China
文摘Casting magnesium alloys are highly heterogeneous materials inevitably containing numerous voids.These voids will evolve during material deformation and markedly affect material behaviors,so it is important to investigate the equation of the void evolution and the constitutive relation involving the void evolution.By assuming the voids in casting magnesium alloys were spherical,the growth equation of the voids was obtained from the incompressibility and continuity conditions of material matrix. Through combining the obtained void-growth equation with the void-nucleation equation relative to the increment of intrinsic-time measure,the evolution equation of the voids was presented.By introducing the presented void-evolution equation to a nonclassical elastoplastic constitutive equation,a constitutive model involving the void evolution was put forward.The corresponding numerical algorithm and finite element procedure of the model were developed and applied to the analysis of the elastoplastic response and the porosity change of casting magnesium alloy ZL305.Computed results show satisfactory agreement with those of the corresponding experiments.
基金The project supported by the National Natural Science Foundation of China(20020003023)the Ministry of Education(key grant 0306)
文摘A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the exact parametric form of integrals.
基金Project(10572157) supported by the National Natural Science Foundation of China
文摘The void evolution equation and the elastoplastic constitutive model of casting magnesium alloy were investigated. The void evolution equation consists of the void growth and the void nucleation equations. The void growth equation was obtained based on the continuous supposition of the material matrix,and the void nucleation equation was derived by assuming that the void nucleation follows a normal distribution. A softening function related to the void evolution was given. After the softening function was embedded to a nonclassical elastoplastic constitutive equation,a constitutive model involving void evolution was obtained. The numerical algorithm and the finite element procedure related to the constitutive model were developed and applied to the analysis of the distributions of the stress and the porosity of the notched cylindrical specimens of casting magnesium alloy ZL305. The computed results show satisfactory agreement with the experimental data.
文摘The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.