期刊文献+
共找到4,918篇文章
< 1 2 246 >
每页显示 20 50 100
Void Formation Analysis in the Molded Underfill Process for Flip-Chip Packaging
1
作者 Ian Hu Tzu-Chun Hung +2 位作者 Mu-Heng Zhou Heng-Sheng Lin Dao-Long Chen 《Computers, Materials & Continua》 2025年第7期537-551,共15页
Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulatin... Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulating material to ensure good reliability.Flow-front merging usually occurs during the molding process,and air is then trapped under the chip,which can form voids in the molded product.The void under the chip may cause stability and reliability problems.However,the flow process is unobservable during the transfer molding process.The engineer can only check for voids in the molded product after the process is complete.Previous studies have used fluid visualization experiments and developed computational fluid dynamics simulation tools to investigate this issue.However,a critical gap remains in establishing a comprehensive three-dimensional model that integrates two-phase flow,accurate venting settings,and fluid surface tension for molded underfill void evaluation—validated by experimental fluid visualization.This study aims to address this gap in the existing literature.In this study,a fluid visualization experiment was designed to simulate the transfer molding process,allowing for the observation of flow-front merging and void formation behaviors.For comparison,a three-dimensional mold flow analysis was also performed.It was found that the numerical simulation of the trapped air compression process under the chip was more accurate when considering the capillary force.The effect of design factors is evaluated in this paper.The results show that the most important factors for void size are fluid viscosity,the gap height under the chip,transfer time,contact angle between the fluid and the contact surfaces,and transfer pressure.Specifically,a smaller gap height beneath the chip aggravates void formation,while lower viscosity,extended transfer time,reduced contact angle,and increased transfer pressure are effective in minimizing void size.The overall results of this study will be useful for product and process design in selecting appropriate solutions for IC packaging,particularly in the development of void-free molded-underfill flip-chip packages.These findings support the optimization of industrial packaging processes in semiconductor manufacturing by guiding material selection and process parameters,ultimately enhancing package reliability and yield. 展开更多
关键词 Flip chip transfer molding molded underfill void formation capillary force
在线阅读 下载PDF
Harnessing sediment voids of low-grade salt mines for compressed air energy storage:Experimental and theoretical insights
2
作者 Qihang Li Wei Liu +5 位作者 Liangliang Jiang Yiwen Ju Aliakbar Hassanpouryouzband Guimin Zhang Xiangzhao Kong Jun Xu 《International Journal of Mining Science and Technology》 2025年第8期1303-1322,共20页
Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt format... Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt formations,insoluble impurities and interlayers detach during salt dissolution and accumulate as sediment at the cavern base,thereby reducing the storage capacity and economic viability of salt cavern gas storage(SCGS).This study investigates sediment formation mechanisms,void distribution,and voidage in the Huai'an low-grade salt mine,introducing a novel self-developed physical simulation device for two butted-well horizontal(TWH)caverns that replicates compressed air injection and brine discharge.Experiments comparing“one injection and one discharge”and“two injections and one discharge”modes revealed that(1)compressed air effectively displaces brine from sediment voids,(2)a 0.5 MPa injection pressure corresponds to a 10.3 MPa operational lower limit in practice,aligning with field data,and(3)sediment voidage is approximately 46%,validated via air-brine interface theory.The“two injections and one discharge”mode outperformed in both discharge volume and rate.Additionally,a mathematical model for brine displacement via compressed air was established.These results provide foundational insights for optimizing compressed air energy storage(CAES)in low-grade salt mines,advancing their role in renewable energy integration. 展开更多
关键词 Salt cavern Sediment voids CAES Energy storage Physical experiment Low-grade salt mines
在线阅读 下载PDF
Voids and cracks detection in bulk superconductors through magnetic field and displacement signals
3
作者 Dongming An Pengpeng Shi Xiaofan Gou 《Acta Mechanica Sinica》 2025年第5期148-161,共14页
Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applicat... Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applications such as trapped field magnets.However,for such large-grain superconductor bulks,there are lots of voids and cracks forming during the process of melting preparation,and some of them can be up to hundreds of microns or even millimeters in size.Consequently,these larger size voids/cracks pose a great threat to the strength of the bulks due to the inherent brittleness of superconductor REBCO materials.In order to ensure the operational safety of related superconducting devices with bulk superconductors,it is firstly important to accurately detect these voids/cracks in them.In this paper,we proposed a method for quantitatively evaluating multiple voids/cracks in bulk superconductors through the magnetic field and displacement response signals at superconductor bulk surface.The proposed method utilizes a damage index constructed from the magnetic field signals and displacement responses to identify the number and preliminary location of multiple defects.By dividing the detection area into subdomains and combining the magnetic field signals with displacement responses within each subdomain,a particle swarm algorithm was employed to evaluate the location and size parameters of the defects.In contrast to other evaluation methods using only magnetic field or displacement response signals,the combined evaluation method using both signals can identify the number of cracks effectively.Numerical studies demonstrate that the morphology of voids and cracks reconstructed using the proposed algorithm ideally matches real defects and is applicable to cases where voids and cracks coexist.This study provides a theoretical basis for the quantitative detection of voids/cracks in bulk superconductors. 展开更多
关键词 Bulk superconductor Defect detection Multiple voids and cracks Damage index Particle swarm optimization
原文传递
Molecular Dynamics Study on the Interactions of 1/2[110]Edge Dislocations with Voids and Ni_(3)Al Precipitates in FCC Ni
4
作者 Wendong Cui Junfeng Nie +1 位作者 Pandong Lin Lei He 《Acta Mechanica Solida Sinica》 2025年第1期1-13,共13页
Nickel-based alloys are the primary structural materials in steam generators of high-temperature gas reactors.To understand the irradiation effect of nickel-based alloys,it is necessary to examine dislocation movement... Nickel-based alloys are the primary structural materials in steam generators of high-temperature gas reactors.To understand the irradiation effect of nickel-based alloys,it is necessary to examine dislocation movement and its interaction with irradiation defects at the microscale.Hardening due to voids and Ni_(3)Al precipitates may significantly impact irradiation damage in nickel-based alloys.This paper employs the molecular dynamics method to analyze the interaction between edge dislocations and irradiation defects(void and Ni_(3)Al precipitates)in face-centered cubic nickel.The effects of temperature and defect size on the interaction are also explored.The results show that the interaction process of the edge dislocation and irradiation defects can be divided into four stages:dislocation free slip,dislocation attracted,dislocation pinned,and dislocation unpinned.Interaction modes include the formation of stair-rod dislocations and the climbing of extended dislocation bundles for voids,as well as the generation of stair-rod dislocation and dislocation shear for precipitates.Besides,the interactions of edge dislocations with voids and Ni_(3)Al precipitates are strongly influenced by temperature and defect size. 展开更多
关键词 void Ni_(3)Al precipitate Nickel Edge dislocation Molecular dynamics
原文传递
A photogrammetric approach for quantifying the evolution of rock joint void geometry under varying contact states
5
作者 Rui Yong Changshuo Wang +1 位作者 Nick Barton Shigui Du 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期461-477,共17页
Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques o... Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints. 展开更多
关键词 Rock joint void geometry evolution PHOTOGRAMMETRY APERTURE void volume Joint matching coefficient
在线阅读 下载PDF
Molecular Dynamics Simulation of Shock Response of CL-20 Co-crystals Containing Void Defects 被引量:1
6
作者 Changlin Li Wei Yang +5 位作者 Qiang Gan Yajun Wang Lin Liang Wenbo Zhang Shuangfei Zhu Changgen Feng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期364-374,共11页
To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitro... To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals. 展开更多
关键词 CL-20 co-crystals Molecular dynamics simulation Reactive forcefield Impact response Hot spot void defect
在线阅读 下载PDF
Revealing the Void Formation Mechanism during Superplastic Deformation of a Fine-Grained Ni-Co-Base Superalloy
7
作者 Rashad AAl-Hammadi Rui Zhang +2 位作者 Chuanyong Cui Zijian Zhou Yizhou Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第5期915-920,共6页
The mechanism behind void formation during superplasticity remains a subject of uncertainty.This study presented a novel insight into the void formation in a fine-grained Ni-Co-based superalloy during superplasticity.... The mechanism behind void formation during superplasticity remains a subject of uncertainty.This study presented a novel insight into the void formation in a fine-grained Ni-Co-based superalloy during superplasticity.It was observed that the dissolution ofγ′-particles resulted in the creation of vacancies due to differences in atomic size between the matrix and the particles.These vacancies acted as inclusions,leading to the formation of micro-voids.Notably,excessive void formation correlated with higher particle dissolution was experimentally observed,highlighting a direct relationship between void formation and particle dissolution. 展开更多
关键词 SUPERPLASTICITY void formation Ni-Co-based superalloy Microstructure
原文传递
Effect of Temperature and Grain Boundary on Void Evolution in Irradiated Copper:A Phase-Field Study
8
作者 Qionghuan Zeng Yiming Chen +4 位作者 Zhongsheng Yang Yunhao Huang Zhijun Wang Junjie Li Jincheng Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第9期1621-1632,共12页
The continued existence of high-energy radiation in nuclear reactors at high temperatures results in the formation of radiation-induced voids,which will further lead to inevitable swellings of polycrystalline structur... The continued existence of high-energy radiation in nuclear reactors at high temperatures results in the formation of radiation-induced voids,which will further lead to inevitable swellings of polycrystalline structural components and thus premature failures.A deep understanding of the effect of temperature and grain boundary on void evolution in irradiated copper is significant for preventing this kind of failures.Here,the phase-field method was employed to study void evolution in irradiated copper under different temperatures and grain sizes.The results show that,due to the different sensitivities of point defect production rate and vacancy diffusion rate to temperature changes,both the nucleation-growth rate and the coarsening rate during void evolution increase first and then decrease with increasing temperature;moreover,the nucleation mechanism exhibits site-saturated nucleation at low temperatures while continuous nucleation at high temperatures.The presence of grain boundary can accelerate the emergence of void because grain boundaries can absorb more interstitials than vacancies.The finer the grain size,the stronger inhibitory effect of grain boundaries on the growth rate of void,due to the formation of void denuded zone near grain boundaries.At high temperatures,the growth rate of void in fine grains is significantly reduced due to the increase of vacancy diffusion rate and the enhancement of sink effect of grain boundary on vacancy. 展开更多
关键词 void evolution Phase-field method Temperature Grain boundary
原文传递
Professor Wei-bin GAO's experience in treatment of voiding dysfunction with electroacupuncture
9
作者 Shao-peng LIU Ming-yuan HAN +5 位作者 Xin-yuan CAO Ying-ying ZHU Jian-tao YIN Zhong-ren SUN Wei-bin GAO Hong-na YIN 《World Journal of Acupuncture-Moxibustion》 CAS CSCD 2024年第4期325-331,共7页
As a common clinical syndrome,voiding dysfunction is complicated in etiology,involved in a variety of diseases and associated with multi-disciplines of medicine.Either medication or surgery has not obtained the favora... As a common clinical syndrome,voiding dysfunction is complicated in etiology,involved in a variety of diseases and associated with multi-disciplines of medicine.Either medication or surgery has not obtained the favorable effect on it.Integrated the theories of traditional Chinese medicine and Western medicine and based on the pathogenesis of the disease,the acupoint specificity and neuromodulatory effects,Professor Wei-bin GAO suggested"selecting the acupoints along the affected areas"The acupoints located near to the lumbar,sacral and abdominal regions are dominated and stimulated with electroacupuncture at different electric waves.In treatment,electric stimulation with disperse and dense waves was adopted.The bone conduction theory of dense-wave electric field was proposed.The same neuromodulation is presented in different diseases such as neurogenic bladder,pediatric enuresis,senile nocturia,benign prostatic hyerplasia,and postpartum of postoperative urination disorders.Hence,the same therapeutic method is adoptable to different diseases with the basic acupoint composition modified. 展开更多
关键词 ELECTROACUPUNCTURE voiding dysfunction Wei-bin GAO EXPERIENCE
原文传递
Finite element model simulation and back propagation neural network modeling of void closure for an extra-thick plate during gradient temperature rolling
10
作者 Shun-hu Zhang Wen-hao Tian +4 位作者 Li-zhi Che Wei-jian Chen Yan Li Liang-wei Wan Zi-qi Yin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2236-2247,共12页
The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element mode... The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element model of the gradient temperature rolling process was first developed and validated.The prediction error of the model for the rolling force is less than 2.51%,which has provided the feasibility of imbedding a defect in it.Based on the relevant data obtained from the simulation,the BP neural network was used to establish a prediction model for the compression degree of a void defect.After statistical analysis,80%of the data had a hit rate higher than 95%,and the hit rate of all data was higher than 90%,which indicates that the BP neural network can accurately predict the compression degree.Meanwhile,the comparisons between the results with the gradient temperature rolling and uniform temperature rolling,and between the results with the single-pass rolling and multi-pass rolling were discussed,which provides a theoretical reference for developing process parameters in actual production. 展开更多
关键词 BP neural network Finite element model Gradient temperature rolling void defect Extra-thick plate
原文传递
A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe
11
作者 Xiaochu Luo Xiaobing Qi +3 位作者 Zhao Luo Zhonghao Li Ruiquan Liao Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1233-1249,共17页
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel... Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%. 展开更多
关键词 Forced annular flow dynamic conductivity probe void fraction gas-liquid flow liquid film thickness
在线阅读 下载PDF
Mechanism of cross-level settlements and void accumulation of wide and conventional sleepers in railway ballast
12
作者 Olga Nabochenko Mykola Sysyn +1 位作者 Norman Krumnow Szabolcs Fischer 《Railway Engineering Science》 EI 2024年第3期361-383,共23页
The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregul... The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregularities initiation and development is unclear.The motivation of the present study was the previous experimental studies on the application of wide sleepers in the ballasted track.The long-term track geometry measurements with wide sleepers show an enormous reduction of the vertical longitudinal irregularities compared to the conventional track.However,wide sleepers had higher twist and cross-section level irregularities.The present paper aims to explain the phenomenon by discrete element method(DEM)modeling the development process of sleeper inhomogeneous support at cross-level depending on the sleeper form.The DEM simulations show that the maximal settlement intensity is up to 3.5 times lower for a wide sleeper in comparison with the conventional one.Nevertheless,the cross-level differential settlements are almost the same for both sleepers.The particle loading distribution after all loading cycles is concentrated on the smaller area,up to the half sleeper length,with fully unloaded zones under sleeper ends.Ballast flow limitation under the central part of the sleeper could improve the resilience of wide sleepers to the development of cross-level irregularities.The mechanism of initiation of the cross-level irregularity is proposed,which assumes the loss of sleeper support under sleeper ends.The further growth of inhomogeneous settlements along the sleeper is assumed as a result of the interaction of two processes:ballast flow due to dynamic impact during void closing and on the other side high pressure due to the concentration of the pressure under the middle part of the sleeper.The DEM simulation results support the assumption of the mechanism and agree with the experimental studies. 展开更多
关键词 Wide sleeper Ballasted track Sleeper support inhomogeneity Sleeper foot form Discrete element modeling void accumulation
在线阅读 下载PDF
An innovative Time Domain Reflectometry(TDR)sensor to monitor earthquake induced void redistribution in layered soils
13
作者 Quan Gao Xiong Yu 《Intelligent Geoengineering》 2024年第1期78-87,共10页
Liquefaction induced soil void redistribution,i.e.,the formation of thin water film between soil layers,has been identified as an important trigger of ground liquefaction occurring in stratified soils with embedded lo... Liquefaction induced soil void redistribution,i.e.,the formation of thin water film between soil layers,has been identified as an important trigger of ground liquefaction occurring in stratified soils with embedded low permeability layer.Conventional liquefaction assessment of soils are conducted on uniform soil samples,which do not capture the liquefaction due to void redistribution and therefore,potentially underestimate the liquefaction occurring in the field conditions.The void redistribution,however,has not been directly validated due to lack of experimental tools for such measurements.This paper presents an innovative high resolution Time Domain Reflectometry(TDR)sensing system to directly quantify the development of thin water film in layered soils.A new spiral TDR sensor is designed and fabricated with the assistance of 3-D printing technology.A spiral sensor design is proposed to achieves high spatial resolution and sensitivity in detecting thin water film.The new spiral sensor is applied to monitor the dynamic evolvement of water film under static and dynamic conditions.In the static tests,water films with different thickness are generated between two saturated sand layers using special experimental setup.The testing results indicate that the spiral TDR waveguide has capability to detect water film as thin as 1 mm.In the dynamic experiments,the onset and evolution of interlayer water film is produced in stratified soil profile with shaking table excitation.It includes TDR system with fast signal acquisition.An algorithm is developed to analyze TDR signals to determine the thickness of water film based on the dielectric mixing model for soil-water mixture.The thickness of interlayer water film by analyzing recorded TDR signal agree reasonably well with the results of direct physical measurements.Overall,this study demonstrates the potential of an innovative TDR sensor to provide real time monitoring of water film developed in layered soils subjected to seismic ground shaking,and therefore provide a tool to generate important insight on ground liquefaction triggered by void redistribution along low permeability layers. 展开更多
关键词 void redistribution Water film Time domain reflectrometry Spiral sensor
在线阅读 下载PDF
A MICROSCOPIC DAMAGE MODEL CONSIDERING THE CHANGE OF VOID SHAPE AND APPLICATION IN THE VOID CLOSING
14
作者 朱明 金泉林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第8期755-762,共8页
A microscopic damage model of ellipsoidal body containing ellipsoidal void for nonlinear matrix materials is developed under a particular coordinate. The change of void shape is considered in this model. The viscous r... A microscopic damage model of ellipsoidal body containing ellipsoidal void for nonlinear matrix materials is developed under a particular coordinate. The change of void shape is considered in this model. The viscous restrained equation obtained from the model is affected by stress ?ij, void volume fraction f, material strain rate exponent m as well as the void shape. Gurson's equation is modified from the numerical solution. The modified equation is suitable for the case of nonlinear matrix materials and changeable voids. Lastly, the model is used to analyze the closing process of voids. 展开更多
关键词 nonlinear material ellipsoidal void void shape void closing
在线阅读 下载PDF
COUPLING EFFECTS OF VOID SHAPE AND VOID SIZE ON THE GROWTH OF AN ELLIPTIC VOID IN A FIBER-REINFORCED HYPER-ELASTIC THIN PLATE
15
作者 Jiusheng Ren Hanhai Li +1 位作者 Changjun Cheng Xuegang Yuan 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第3期312-320,共9页
The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite el... The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite elasticity. Coupling effects of void shape and void size on the growth of the void are paid special attention to. The deformation function of the plate with an isolated elliptic void is given, which is expressed by two parameters to solve the differential equation. The solution is approximately obtained from the minimum potential energy principle. Deformation curves for the void with a wide range of void aspect ratios and the stress distributions on the surface of the void have been obtained by numerical computation. The growth behavior of the void and the characteristics of stress distributions on the surface of the void are captured. The combined effects of void size and void shape on the growth of the void in the thin plate are discussed. The maximum stresses for the void with different sizes and different void aspect ratios are compared. 展开更多
关键词 fiber reinforced hyper-elastic material rectangular thin plate with void void shapeand void size potential energy principle growth of void
原文传递
Influence of voids on interlaminar shear strength of carbon/epoxy fabric laminates
16
作者 ZHU Hong-yan LI Di-hong +2 位作者 ZHANG Dong-xing WU Bao-chang CHEN Yu-yong 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期470-475,共6页
The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Speci... The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Specimens with void contents in the range of 0.2%-8.0%for [(±45)_(4)/(0,90)/(±45)_(2)]_(S) and 0.2%-6.1%for[(±45)/0_(4)/(0,90)/0_(2)]_(S) were fabricated from carbon/epoxy fabric through varying autoclave pressures.The characteristics of the voids were studied by using optical image analysis to explain the interlaminar shear strength results.The influences of voids on the interlaminar shear strength of the two stacking sequences were compared in terms of the void content and size and shape of the void.The effect of voids on the initiation and propagation of interlaminar failure of both stacking sequence composites was found. 展开更多
关键词 carbon fibre reinforced polymer(CFRP)composite void content void size void shape interlaminar shears strength
在线阅读 下载PDF
Void Growth and Interaction in a Structural Aluminum Alloy: Experiments and Theory
17
作者 Scott Gampert Abu Bakar Siddique Tariq A. Khraishi 《Journal of Minerals and Materials Characterization and Engineering》 2021年第1期14-37,共24页
The problem of void growth and interaction is of importance to understanding the mechanics of failure in metals exhibiting ductility. In this work, the growth and interaction of voids in 6061-T6 aluminum were studied ... The problem of void growth and interaction is of importance to understanding the mechanics of failure in metals exhibiting ductility. In this work, the growth and interaction of voids in 6061-T6 aluminum were studied experimentally. Specifically, holes of varying numbers and relative placement were investigated for their normalized area growth with applied displacement. Flat dog-bone specimens were carefully drilled in their gauge area with no (zero) holes, one hole, and two holes (arranged vertically or horizontally) for experimentation after polishing. The growth of holes, captured by video recordings, exhibited exponential behavior and was influenced greatly by the number and arrangement of holes with the horizontal voids growing the fastest and the vertical ones growing the slowest. Also, the ensuring deformation of the sample was studied using load-displacement curves, pictography and videography, SEM imaging and Atomic Force Microscopy (AFM). The methods revealed that although the major part failure is due to large crack formation, it was preceded by intense dislocation slip activity and the formation of micro cavities. Also, the AFM quantified the three-dimensional nature of crystal or grain deformation and how it is greatly influenced by distance and location from the hole. Lastly, theoretical understanding of hole growth was offered. 展开更多
关键词 voids HOLES Stress Concentration void Growth void Interaction
在线阅读 下载PDF
Diffusion behavior at void tip and its contributions to void shrinkage during solid-state bonding 被引量:5
18
作者 C.Zhang M.Q.Li H.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1449-1454,共6页
Solid-state diffusion bonding is an advanced joining technique, which has been widely used to join similar or dissimilar materials. Generally, it is easy to observe the diffusion behavior during dissimilar bonding, bu... Solid-state diffusion bonding is an advanced joining technique, which has been widely used to join similar or dissimilar materials. Generally, it is easy to observe the diffusion behavior during dissimilar bonding, but for similar bonding the diffusion behavior has yet been observed via experiments. In this study, the diffusion behavior at void tip was firstly observed during similar bonding of stainless steel. Scanning electron microscopy with energy dispersive spectroscopy was used to examine the interface charac- teristic and diffusion behavior. The results showed that a diffusion region was discovered at void tip. Element concentrations of diffusion region were more than those of void region, but less than those of bonded region. This behavior indicated that the diffusion was ongoing at void tip, but the perfect bond has yet formed. The diffusion region was attributed to the interface diffusion from adjacent region to void tip due to the stress gradient along bonding interface. The mass accumulation at void tip transformed the sharp void tip into smooth one at the beginning of void shrinkage, and then resulted in shorter voids. 展开更多
关键词 Stainless steel Micro-void morphology Solid-state bonding void tip Element diffusion
原文传递
基于VOID词表的数据集及链接语义关系分析 被引量:2
19
作者 贾君枝 马文雯 《情报科学》 CSSCI 北大核心 2020年第10期97-103,共7页
【目的/意义】VOID词表作为元数据词表,对于研究关联数据资源的描述、组织、发布、检索、利用等具有重要意义。【方法/过程】从VOID词表中数据集的构成以及VOID词表中的链接语义关系两方面进行分析。归纳了VOID词表的属性、VOID词表中... 【目的/意义】VOID词表作为元数据词表,对于研究关联数据资源的描述、组织、发布、检索、利用等具有重要意义。【方法/过程】从VOID词表中数据集的构成以及VOID词表中的链接语义关系两方面进行分析。归纳了VOID词表的属性、VOID词表中数据集的主题方向、发布机构、数据集构成的链接语义网络的特点以及链接谓词类型、数据集使用词表的具体情况和共现网络的链接特点。【结果/结论】数据集构成的链接网络中语义关系多数为等同关系,且共现网络中节点与节点之间的联系不够紧密。对语义链接关系进行分析促进了用户对VOID词表的应用以及相关问题的进一步思考、探索和解决。 展开更多
关键词 void词表 链接语义网络 关联数据
原文传递
Simulation of lattice orientation effects on void growth and coalescence by crystal plasticity 被引量:2
20
作者 Mei YANG Xianghuai DONG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第1期40-50,共11页
A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coalescence. The 3D computational model is a unit cell inc... A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coalescence. The 3D computational model is a unit cell including one sphere void or two sphere voids. The results of three different orientations for single crystal and bicrystals are compared. It is found that crystallographic orientation has noticeable influences on the void growth directionvoid shape, and void coalescence of single crystal. The void growth rate of bicrystals depends on the crystallographic orientations and grain boundary direction. 展开更多
关键词 Crystal plasticity void growth void coalescence Lattice orientation BICRYSTAL
在线阅读 下载PDF
上一页 1 2 246 下一页 到第
使用帮助 返回顶部