The fundamental ideas on building the collaborative design platform of virtual visualization for NC machine tools are introduced. The platform is based on the globally shared product model conforming to the STEP Stand...The fundamental ideas on building the collaborative design platform of virtual visualization for NC machine tools are introduced. The platform is based on the globally shared product model conforming to the STEP Standard,and used PDM system to integrate and encapsulate CAD/CAE and other application software for the product development. The platform also integrated the expert system of NC machine tools design,analysis and estimation. This expert system utilized fuzzy estimation principle to evaluate the design and simulation analysis results and make decisions. The platform provides the collaborative intelligent environment for the design of virtual NC machine tools prototype aiming at integrated product design team. It also supports the customized development of NC machine tools.展开更多
The structure features and driving modes of virtual axis NC machine tools are studied. Accor ding to different application requirements,the three axis control method,the five axis control method and the sixfre...The structure features and driving modes of virtual axis NC machine tools are studied. Accor ding to different application requirements,the three axis control method,the five axis control method and the sixfreedom control method are put forward.These results lay a foundation for the product development of the virtual axis NC machine tools展开更多
Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper,a virtual simulation system for remote collaborative surface machining...Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper,a virtual simulation system for remote collaborative surface machining is developed. The motion command of machine tool is generated by an interpolator,which can derive synchronized motion commands according to feedrate. Thus,the system can estimate the machining time. For universal assembly of five-axis virtual machine tool,it is based on the D-H notation representation and machining constraints consideration. The remote collaborative virtual manufacturing system based on the CORBA technology is proposed in this paper. It demonstrated that the developed virtual machine tool can be used to verify and simulate the machining process for the collaboration of the surface design and manufacturing team.展开更多
Virtual manufacturing is fast becoming an affordable technology with wide-ranging applications in modern manufacturing. Its advantages over existing technology are primarily that users can visualize, feel involvement ...Virtual manufacturing is fast becoming an affordable technology with wide-ranging applications in modern manufacturing. Its advantages over existing technology are primarily that users can visualize, feel involvement and interact with virtual representations of real world activities in real time. In this paper, a virtual cutting system is built which can simulate turning process, estimate tool wear and cutting force using artificial neural network etc. Using the simulated machining environment in virtual reality (VR), the user can practise and preview the operations for possible problems that might occur during implementation. This approach enables designers to evaluate and design feasible machining processes in a consistent manner as early as possible during the development process.展开更多
Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for eva...Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for evaluation of the residual function of the liver prior to the intervention of the surgeons. For this purpose, a complete software platform consisting of three basic modules: liver volume segmentation, visualization, and virtual cutting, was developed and tested. Liver volume segmentation is based on a patient examination with non-contrast abdominal Computed Tomography (CT). The basis of the segmentation is a multiple seeded region growing algorithm adapted for use with CT images without contrast-enhancement. Virtual tumor resection is performed interactively by outlining the liver region on the CT images. The software application then processes the results to produce a three-dimensional (3D) image of the “resected” region. Finally, 3D rendering module provides possibility for easy and fast interpretation of the segmentation results. The visual outputs are accompanied with quantitative measures that further provide estimation of the residual liver function and based on them the surgeons could make a better decision. The developed system was tested and verified with twenty abdominal CT patient sets consisting of different numbers of tomographic images. Volumes, obtained by manual tracing of two surgeon experts, showed a mean relative difference of 4.5%. The application was used in a study that demonstrates the need and the added value of such a tool in practice and in education.展开更多
基金Funded by National Natural Science foundation of China(50375026)
文摘The fundamental ideas on building the collaborative design platform of virtual visualization for NC machine tools are introduced. The platform is based on the globally shared product model conforming to the STEP Standard,and used PDM system to integrate and encapsulate CAD/CAE and other application software for the product development. The platform also integrated the expert system of NC machine tools design,analysis and estimation. This expert system utilized fuzzy estimation principle to evaluate the design and simulation analysis results and make decisions. The platform provides the collaborative intelligent environment for the design of virtual NC machine tools prototype aiming at integrated product design team. It also supports the customized development of NC machine tools.
文摘The structure features and driving modes of virtual axis NC machine tools are studied. Accor ding to different application requirements,the three axis control method,the five axis control method and the sixfreedom control method are put forward.These results lay a foundation for the product development of the virtual axis NC machine tools
文摘Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper,a virtual simulation system for remote collaborative surface machining is developed. The motion command of machine tool is generated by an interpolator,which can derive synchronized motion commands according to feedrate. Thus,the system can estimate the machining time. For universal assembly of five-axis virtual machine tool,it is based on the D-H notation representation and machining constraints consideration. The remote collaborative virtual manufacturing system based on the CORBA technology is proposed in this paper. It demonstrated that the developed virtual machine tool can be used to verify and simulate the machining process for the collaboration of the surface design and manufacturing team.
文摘Virtual manufacturing is fast becoming an affordable technology with wide-ranging applications in modern manufacturing. Its advantages over existing technology are primarily that users can visualize, feel involvement and interact with virtual representations of real world activities in real time. In this paper, a virtual cutting system is built which can simulate turning process, estimate tool wear and cutting force using artificial neural network etc. Using the simulated machining environment in virtual reality (VR), the user can practise and preview the operations for possible problems that might occur during implementation. This approach enables designers to evaluate and design feasible machining processes in a consistent manner as early as possible during the development process.
文摘Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for evaluation of the residual function of the liver prior to the intervention of the surgeons. For this purpose, a complete software platform consisting of three basic modules: liver volume segmentation, visualization, and virtual cutting, was developed and tested. Liver volume segmentation is based on a patient examination with non-contrast abdominal Computed Tomography (CT). The basis of the segmentation is a multiple seeded region growing algorithm adapted for use with CT images without contrast-enhancement. Virtual tumor resection is performed interactively by outlining the liver region on the CT images. The software application then processes the results to produce a three-dimensional (3D) image of the “resected” region. Finally, 3D rendering module provides possibility for easy and fast interpretation of the segmentation results. The visual outputs are accompanied with quantitative measures that further provide estimation of the residual liver function and based on them the surgeons could make a better decision. The developed system was tested and verified with twenty abdominal CT patient sets consisting of different numbers of tomographic images. Volumes, obtained by manual tracing of two surgeon experts, showed a mean relative difference of 4.5%. The application was used in a study that demonstrates the need and the added value of such a tool in practice and in education.