Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization...Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization of Network Functions(NFs)to enable configurable service priorities and resource demands.Telecommunications Service Providers(TSPs)face challenges in network utilization,as the vast amounts of data generated by the Internet of Things(IoT)overwhelm existing infrastructures.IoT applications,which generate massive volumes of diverse data and require real-time communication,contribute to bottlenecks and congestion.In this context,Multiaccess Edge Computing(MEC)is employed to support resource and priority-aware IoT applications by implementing Virtual Network Function(VNF)sequences within Service Function Chaining(SFC).This paper proposes the use of Deep Reinforcement Learning(DRL)combined with Graph Neural Networks(GNN)to enhance network processing,performance,and resource pooling capabilities.GNN facilitates feature extraction through Message-Passing Neural Network(MPNN)mechanisms.Together with DRL,Deep Q-Networks(DQN)are utilized to dynamically allocate resources based on IoT network priorities and demands.Our focus is on minimizing delay times for VNF instance execution,ensuring effective resource placement,and allocation in SFC deployments,offering flexibility to adapt to real-time changes in priority and workload.Simulation results demonstrate that our proposed scheme outperforms reference models in terms of reward,delay,delivery,service drop ratios,and average completion ratios,proving its potential for IoT applications.展开更多
The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is...The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.展开更多
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patient...The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains un- clear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The FugI-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sen- sorimotor cortex.展开更多
Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The s...Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.展开更多
To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middl...To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middleboxes into software-based virtualized function entities.Due to the demands of virtual services placement in NFV network environment, this paper models the service amount placement problem involving with the resources allocation as a cooperative game and proposes the placement policy by Nash Bargaining Solution(NBS). Specifically,we first introduce the system overview and apply the rigorous cooperative game-theoretic guide to build the mathematical model, which can give consideration to both the responding efficiency of service requirements and the allocation fairness.Then a distributed algorithm corresponding to NBS is designed to achieve predictable network performance for virtual instances placement.Finally, with simulations under various scenarios,the results show that our placement approach can achieve high utilization of network through the analysis of evaluation metrics namely the satisfaction degree and fairness index. With the suitable demand amount of services, the average values of two metrics can reach above 90%. And by tuning the base placement, our solution can enable operators to flexibly balance the tradeoff between satisfaction and fairness of resourcessharing in service platforms.展开更多
Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. ...Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. Methods: Form January, 2019 to December, 2019, 80 cerebrovascular disease patients were recruited, and had been divided into control group (n = 40) and observation group (n = 40), randomly. The control groups received conventional rehabilitation treatment, for 40 minutes per day, while observation group received conventional rehabilitation treatment, for 20 minutes per day, and virtual reality technology treatment, 20 minutes per day, 5 days a week for 4 weeks. Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment-Upper Extremities (FMA-UE) and modified Barthel index (MBI) were used to assess the motor function of the upper limbs and ADL before and after treatment. Results: Before treatment, the scores of WMFT, FMA-UE and MBI were no significant difference between two groups (P > 0.05). The scores improved in both groups after treatment (P < 0.01), and were higher in the observation group than in the control group (P < 0.05). Conclusion: The somatosensory interaction technology combined with virtual reality technology could facilitate to improve the upper limbs function and ADL in cerebrovascular disease patients.展开更多
The contribution of functional virtual prototyping to vehicle chassis development is presented. The different topics that we took into consideration were reform analysis and improvement design during the vehicle chass...The contribution of functional virtual prototyping to vehicle chassis development is presented. The different topics that we took into consideration were reform analysis and improvement design during the vehicle chassis development. A frame of coordinates based on the digital-model was established, the main CAE analy- sis methods, multi-body system dynamics and finite element analysis were applied to the digital-model build by CAD/CAM software. The method was applied in the vehicle chassis reform analysis and improvement design, all the analysis and design projects were implemented in the uniform digital-model, and the development was carried through effectively.展开更多
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/...Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.展开更多
Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network no...Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network nodes are becoming denser,network topology is becoming more complex,and operators’equipment operation and maintenance costs are increasing.Network functions virtualization multicast issues include building a traffic forwarding topology,deploying the required functions,and directing traffic.Combining the two is still a problem to be studied in depth at present,and this paper proposes a two-stage solution where the decisions of these two stages are interdependent.Specifically,this paper decouples multicast traffic forwarding and function delivery.The minimum spanning tree of traffic forwarding is constructed by Steiner tree,and the traffic forwarding is realized by Viterbi-algorithm.Use a general topology network to examine network cost and service performance.Simulation results show that this method can reduce overhead and delay and optimize user experience.展开更多
In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communic...In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.展开更多
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patien...Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor func- tion test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action perfor- mance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH- 12002238).展开更多
The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network...The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network operators since poor service quality and resource wastage can potentially hurt their revenue in the long term.However,the study shows with a set of test-bed experiments that packet loss at certain positions(i.e.,different VNFs)in an SFC can cause various degrees of resource wastage and performance degradation because of repeated upstream processing and transmission of retransmitted packets.To overcome this challenge,this study focuses on resource scheduling and deployment of SFCs while considering packet loss positions.This study developed a novel SFC packet dropping cost model and formulated an SFC scheduling problem that aims to minimize overall packet dropping cost as a Mixed-Integer Linear Programming(MILP)and proved that it is NP-hard.In this study,Palos is proposed as an efficient scheme in exploiting the functional characteristics of VNFs and their positions in SFCs for scheduling resources and deployment to optimize packet dropping cost.Extensive experiment results show that Palos can achieve up to 42.73%improvement on packet dropping cost and up to 33.03%reduction on average SFC latency when compared with two other state-of-the-art schemes.展开更多
With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw...With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.展开更多
Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(S...Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(SFC)under 5G networks,this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment(MADDPG-SD).Initially,an optimization model is devised to enhance the request acceptance rate,minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.Subsequently,we model the dynamic problem as a Markov decision process(MDP),facilitating adaptation to the evolving states of network resources.Finally,by allocating SFCs to different agents and adopting a collaborative deployment strategy,each agent aims to maximize the request acceptance rate or minimize latency and costs.These agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized training and distributed execution.Experimental simulation results indicate that the proposed method,while simultaneously meeting performance requirements and resource capacity constraints,has effectively increased the acceptance rate of requests compared to the comparative algorithms,reducing the end-to-end latency by 4.942%and the deployment cost by 8.045%.展开更多
Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact...Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can acti- vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.展开更多
基金supported by Institute of Information&Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for the Smart City)in part by the National Research Foundation of Korea(NRF),Ministry of Education,through the Basic Science Research Program under Grant NRF-2020R1I1A3066543+1 种基金in part by BK21 FOUR(Fostering Outstanding Universities for Research)under Grant 5199990914048in part by the Soonchunhyang University Research Fund.
文摘Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization of Network Functions(NFs)to enable configurable service priorities and resource demands.Telecommunications Service Providers(TSPs)face challenges in network utilization,as the vast amounts of data generated by the Internet of Things(IoT)overwhelm existing infrastructures.IoT applications,which generate massive volumes of diverse data and require real-time communication,contribute to bottlenecks and congestion.In this context,Multiaccess Edge Computing(MEC)is employed to support resource and priority-aware IoT applications by implementing Virtual Network Function(VNF)sequences within Service Function Chaining(SFC).This paper proposes the use of Deep Reinforcement Learning(DRL)combined with Graph Neural Networks(GNN)to enhance network processing,performance,and resource pooling capabilities.GNN facilitates feature extraction through Message-Passing Neural Network(MPNN)mechanisms.Together with DRL,Deep Q-Networks(DQN)are utilized to dynamically allocate resources based on IoT network priorities and demands.Our focus is on minimizing delay times for VNF instance execution,ensuring effective resource placement,and allocation in SFC deployments,offering flexibility to adapt to real-time changes in priority and workload.Simulation results demonstrate that our proposed scheme outperforms reference models in terms of reward,delay,delivery,service drop ratios,and average completion ratios,proving its potential for IoT applications.
基金Supported by National Natural Science Foundation of P. R. China (60572070, 60325311, 60534010) Natural Science Foundation of Liaoning Province (20022030)
文摘The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.
基金supported by the National Natural Science Foundationof China,No.30973165
文摘The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains un- clear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The FugI-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sen- sorimotor cortex.
文摘Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.
基金supported by The National Basic Research Program of China (973) (Grant No. 2012CB315901, 2013CB329104)The National Natural Science Foundation of China (Grant No. 61521003, 61372121, 61309019, 61572519, 61502530)The National High Technology Research and Development Program of China (863) (Grant No. 2015AA016102)
文摘To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middleboxes into software-based virtualized function entities.Due to the demands of virtual services placement in NFV network environment, this paper models the service amount placement problem involving with the resources allocation as a cooperative game and proposes the placement policy by Nash Bargaining Solution(NBS). Specifically,we first introduce the system overview and apply the rigorous cooperative game-theoretic guide to build the mathematical model, which can give consideration to both the responding efficiency of service requirements and the allocation fairness.Then a distributed algorithm corresponding to NBS is designed to achieve predictable network performance for virtual instances placement.Finally, with simulations under various scenarios,the results show that our placement approach can achieve high utilization of network through the analysis of evaluation metrics namely the satisfaction degree and fairness index. With the suitable demand amount of services, the average values of two metrics can reach above 90%. And by tuning the base placement, our solution can enable operators to flexibly balance the tradeoff between satisfaction and fairness of resourcessharing in service platforms.
文摘Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. Methods: Form January, 2019 to December, 2019, 80 cerebrovascular disease patients were recruited, and had been divided into control group (n = 40) and observation group (n = 40), randomly. The control groups received conventional rehabilitation treatment, for 40 minutes per day, while observation group received conventional rehabilitation treatment, for 20 minutes per day, and virtual reality technology treatment, 20 minutes per day, 5 days a week for 4 weeks. Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment-Upper Extremities (FMA-UE) and modified Barthel index (MBI) were used to assess the motor function of the upper limbs and ADL before and after treatment. Results: Before treatment, the scores of WMFT, FMA-UE and MBI were no significant difference between two groups (P > 0.05). The scores improved in both groups after treatment (P < 0.01), and were higher in the observation group than in the control group (P < 0.05). Conclusion: The somatosensory interaction technology combined with virtual reality technology could facilitate to improve the upper limbs function and ADL in cerebrovascular disease patients.
文摘The contribution of functional virtual prototyping to vehicle chassis development is presented. The different topics that we took into consideration were reform analysis and improvement design during the vehicle chassis development. A frame of coordinates based on the digital-model was established, the main CAE analy- sis methods, multi-body system dynamics and finite element analysis were applied to the digital-model build by CAD/CAM software. The method was applied in the vehicle chassis reform analysis and improvement design, all the analysis and design projects were implemented in the uniform digital-model, and the development was carried through effectively.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
文摘Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.
基金supported by the R&D Program of Beijing Municipal Education Commission(Nos.KM202110858003 and2022X003-KXD)。
文摘Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network nodes are becoming denser,network topology is becoming more complex,and operators’equipment operation and maintenance costs are increasing.Network functions virtualization multicast issues include building a traffic forwarding topology,deploying the required functions,and directing traffic.Combining the two is still a problem to be studied in depth at present,and this paper proposes a two-stage solution where the decisions of these two stages are interdependent.Specifically,this paper decouples multicast traffic forwarding and function delivery.The minimum spanning tree of traffic forwarding is constructed by Steiner tree,and the traffic forwarding is realized by Viterbi-algorithm.Use a general topology network to examine network cost and service performance.Simulation results show that this method can reduce overhead and delay and optimize user experience.
文摘In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.
基金supported by the Sub-Project under National "Twelfth Five-Year" Plan for Science&Technology Support Project in China,No.2011BAI08B11the Research Project of China Rehabilitation Research Center,No.2014-3
文摘Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor func- tion test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action perfor- mance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH- 12002238).
基金supported by the National Natural Science Foundation of China(NSFC)No.62172189 and 61772235the Natural Science Foundation of Guangdong Province No.2020A1515010771+1 种基金the Science and Technology Program of Guangzhou No.202002030372the UK Engineering and Physical Sciences Research Council(EPSRC)grants EP/P004407/2 and EP/P004024/1,and Innovate UK grant 106199-47198.
文摘The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network operators since poor service quality and resource wastage can potentially hurt their revenue in the long term.However,the study shows with a set of test-bed experiments that packet loss at certain positions(i.e.,different VNFs)in an SFC can cause various degrees of resource wastage and performance degradation because of repeated upstream processing and transmission of retransmitted packets.To overcome this challenge,this study focuses on resource scheduling and deployment of SFCs while considering packet loss positions.This study developed a novel SFC packet dropping cost model and formulated an SFC scheduling problem that aims to minimize overall packet dropping cost as a Mixed-Integer Linear Programming(MILP)and proved that it is NP-hard.In this study,Palos is proposed as an efficient scheme in exploiting the functional characteristics of VNFs and their positions in SFCs for scheduling resources and deployment to optimize packet dropping cost.Extensive experiment results show that Palos can achieve up to 42.73%improvement on packet dropping cost and up to 33.03%reduction on average SFC latency when compared with two other state-of-the-art schemes.
基金This work was supported by the Key Research and Development(R&D)Plan of Heilongjiang Province of China(JD22A001).
文摘With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.
基金The financial support fromthe Major Science and Technology Programs inHenan Province(Grant No.241100210100)National Natural Science Foundation of China(Grant No.62102372)+3 种基金Henan Provincial Department of Science and Technology Research Project(Grant No.242102211068)Henan Provincial Department of Science and Technology Research Project(Grant No.232102210078)the Stabilization Support Program of The Shenzhen Science and Technology Innovation Commission(Grant No.20231130110921001)the Key Scientific Research Project of Higher Education Institutions of Henan Province(Grant No.24A520042)is acknowledged.
文摘Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(SFC)under 5G networks,this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment(MADDPG-SD).Initially,an optimization model is devised to enhance the request acceptance rate,minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.Subsequently,we model the dynamic problem as a Markov decision process(MDP),facilitating adaptation to the evolving states of network resources.Finally,by allocating SFCs to different agents and adopting a collaborative deployment strategy,each agent aims to maximize the request acceptance rate or minimize latency and costs.These agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized training and distributed execution.Experimental simulation results indicate that the proposed method,while simultaneously meeting performance requirements and resource capacity constraints,has effectively increased the acceptance rate of requests compared to the comparative algorithms,reducing the end-to-end latency by 4.942%and the deployment cost by 8.045%.
基金supported by the National Natural Science Foundation of China,No.30973165 and 81372108Guangdong Province College Students Innovative Research Projects in 2013
文摘Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can acti- vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.