期刊文献+
共找到3,764篇文章
< 1 2 189 >
每页显示 20 50 100
Localization of False Data Injection Attacks in Power Grid Based on Adaptive Neighborhood Selection and Spatio-Temporal Feature Fusion
1
作者 Zehui Qi Sixing Wu Jianbin Li 《Computers, Materials & Continua》 2025年第11期3739-3766,共28页
False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail... False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model. 展开更多
关键词 Power grid security adaptive neighborhood selection spatio-temporal correlation false data injection attacks localization
在线阅读 下载PDF
A Support Vector Machine(SVM)Model for Privacy Recommending Data Processing Model(PRDPM)in Internet of Vehicles
2
作者 Ali Alqarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期389-406,共18页
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie... Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance. 展开更多
关键词 Support vector machine big data IoV PRIVACY-PRESERVING
在线阅读 下载PDF
An Arrhythmia Intelligent Recognition Method Based on a Multimodal Information and Spatio-Temporal Hybrid Neural Network Model
3
作者 Xinchao Han Aojun Zhang +6 位作者 Runchuan Li Shengya Shen Di Zhang Bo Jin Longfei Mao Linqi Yang Shuqin Zhang 《Computers, Materials & Continua》 2025年第2期3443-3465,共23页
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to... Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness. 展开更多
关键词 Multimodal learning spatio-temporal hybrid graph convolutional network data imbalance ECG classification
在线阅读 下载PDF
Research on an Air Pollutant Data Correction Method Based on Bayesian Optimization Support Vector Machine
4
作者 Xingfu Ou Miao Zhang Wenfeng Chen 《Journal of Electronic Research and Application》 2025年第4期190-203,共14页
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by... Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data. 展开更多
关键词 Air quality monitoring data calibration Support vector regression Bayesian optimization Machine learning
在线阅读 下载PDF
Deep Support Vector Data Description Based Physical Layer Authentication
5
作者 Shao Yijie Pan Zhiwen +1 位作者 Liu Nan You Xiaohu 《China Communications》 2025年第10期214-222,共9页
In wireless communication,the problem of authenticating the transmitter’s identity is challeng-ing,especially for those terminal devices in which the security schemes based on cryptography are approxi-mately unfeasib... In wireless communication,the problem of authenticating the transmitter’s identity is challeng-ing,especially for those terminal devices in which the security schemes based on cryptography are approxi-mately unfeasible owing to limited resources.In this paper,a physical layer authentication scheme is pro-posed to detect whether there is anomalous access by the attackers disguised as legitimate users.Explicitly,channel state information(CSI)is used as a form of fingerprint to exploit spatial discrimination among de-vices in the wireless network and machine learning(ML)technology is employed to promote the improve-ment of authentication accuracy.Considering that the falsified messages are not accessible for authenticator during the training phase,deep support vector data de-scription(Deep SVDD)is selected to solve the one-class classification(OCC)problem.Simulation results show that Deep SVDD based scheme can tackle the challenges of physical layer authentication in wireless communication environments. 展开更多
关键词 deep support vector data description one-class classification physical layer authentication wireless security
在线阅读 下载PDF
A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model 被引量:1
6
作者 Yan-tao Zhu Chong-shi Gu Mihai A.Diaconeasa 《Water Science and Engineering》 CSCD 2024年第4期417-424,共8页
Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument... Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument faults,and human operational errors,thereby often hindering the accurate assessment of actual deformation patterns.This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data.It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring.The proposed method was validated in a concrete dam project,with the model error maintaining within 5%,demonstrating its effectiveness in processing missing deformation data.This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management. 展开更多
关键词 Missing data recovery Concrete dam Deformation monitoring Spatiotemporal clustering Support vector machine model
在线阅读 下载PDF
Variation of spatio-temporal distribution of on-road vehicle emissions based on real-time RFID data 被引量:5
7
作者 Yonghong Liu Wenfeng Huang +3 位作者 Xiaofang Lin Rui Xu Li Li Hui Ding 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第6期151-162,共12页
High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution ... High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution in the main urban area of Chongqing, based on realtime traffic data from 820 RFID detectors covering 454 roads, and the differences in spatiotemporal emission characteristics between inner and outer districts were analysed. The result showed that the daily vehicular emission intensities of CO, hydrocarbons, PM2.5, PM10,and NO_(x) were 30.24, 3.83, 0.18, 0.20, and 8.65 kg/km per day, respectively, in the study area during 2018. The pollutants emission intensities in inner district were higher than those in outer district. Light passenger cars(LPCs) were the main contributors of all-day CO emissions in the inner and outer districts, from which the contributors of NO_(x) emissions were different. Diesel and natural gas buses were major contributors of daytime NO_(x) emissions in inner districts, accounting for 40.40%, but buses and heavy duty trucks(HDTs) were major contributors in outer districts. At nighttime, due to the lifting of truck restrictions and suspension of buses, HDTs become the main NO_(x) contributor in both inner and outer districts,and its three NO_(x) emission peak hours were found, which are different to the peak hours of total NO_(x) emission by all vehicles. Unlike most other cities, bridges and connecting channels are always emission hotspots due to long-time traffic congestion. This knowledge will help fully understand vehicular emissions characteristics and is useful for policymakers to design precise prevention and control measures. 展开更多
关键词 spatio-temporal distribution Link-level vehicular emission INVENTORY Real-time RFID data HDTs CHONGQING
原文传递
Spatio-temporal variations and influencing factors of energy-related carbon emissions for Xinjiang cities in China based on time-series nighttime light data 被引量:6
8
作者 ZHANG Li LEI Jun +3 位作者 WANG Changjian WANG Fei GENG Zhifei ZHOU Xiaoli 《Journal of Geographical Sciences》 SCIE CSCD 2022年第10期1886-1910,共25页
This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic... This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic DMSP”dataset,from 1992 to 2020,to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang,China.Then,this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique.Results reveal that(1)total carbon emissions continued to grow,while the growth rate slowed down in the past five years.(2)Large regional differences exist in total carbon emissions across various regions.Total carbon emissions of these regions in descending order are the northern slope of the Tianshan(Mountains)>the southern slope of the Tianshan>the three prefectures in southern Xinjiang>the northern part of Xinjiang.(3)Economic growth,population size,and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions.The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’spatial differentiation.This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps. 展开更多
关键词 carbon emissions nighttime light data spatio-temporal variations influencing factors XINJIANG
原文传递
Spatio-temporal changes of underground coal fires during 2008-2016 in Khanh Hoa coal field(North-east of Viet Nam) using Landsat time-series data 被引量:3
9
作者 Tuyen Danh VU Thanh Tien NGUYEN 《Journal of Mountain Science》 SCIE CSCD 2018年第12期2703-2720,共18页
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th... Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field. 展开更多
关键词 UNDERGROUND COAL fires spatio-temporal CHANGES Khanh Hoa COAL field (Viet Nam) LANDSAT time-series data
原文传递
Constructing a raster-based spatio-temporal hierarchical data model for marine fisheries application 被引量:2
10
作者 SU Fenzhen ZHOU Chenhu ZHANG Tianyu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第1期57-63,共7页
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently... Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels. 展开更多
关键词 marine geographical information system spatio-temporal data model knowledge discovery fishery management data warehouse
在线阅读 下载PDF
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids
11
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 False data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
在线阅读 下载PDF
Fusing multi-source data to map spatio-temporal dynamics of winter rape on the Jianghan Plain and Dongting Lake Plain, China 被引量:2
12
作者 TAO Jian-bin LIU Wen-bin +2 位作者 TAN Wen-xia KONG Xiang-bing XU Meng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第10期2393-2407,共15页
Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role... Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties. 展开更多
关键词 WINTER rape spatio-temporal dynamics time-series MODIS data artificial NEURAL network
在线阅读 下载PDF
MANAGEMENT OF SPATIO-TEMPORAL DATA OF CADASTRAL INFORMATION SYSTEM IN CHINA 被引量:1
13
作者 Gao Wenxiu Zhuang Yan Liu Lang 《Geo-Spatial Information Science》 1999年第1期90-95,共6页
Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most cruci... Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice. 展开更多
关键词 CIS SPATIAL data non-spatial data TEMPORAL INFORMATION spatio-temporal data
在线阅读 下载PDF
A Spatio-temporal Data Model for Road Network in Data Center Based on Incremental Updating in Vehicle Navigation System 被引量:1
14
作者 WU Huisheng LIU Zhaoli +1 位作者 ZHANG Shuwen ZUO Xiuling 《Chinese Geographical Science》 SCIE CSCD 2011年第3期346-353,共8页
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy... The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network. 展开更多
关键词 spatio-temporal data model reverse map with overlay model road network incremental updating vehicle navigation system data center vehicle terminal
在线阅读 下载PDF
Multi-Level Cache System of Small Spatio-Temporal Data Files Based on Cloud Storage in Smart City
15
作者 XU Xiaolin HU Zhihua LIU Xiaojun 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第5期387-394,共8页
In this paper, we present a distributed multi-level cache system based on cloud storage, which is aimed at the low access efficiency of small spatio-temporal data files in information service system of Smart City. Tak... In this paper, we present a distributed multi-level cache system based on cloud storage, which is aimed at the low access efficiency of small spatio-temporal data files in information service system of Smart City. Taking classification attribute of small spatio-temporal data files in Smart City as the basis of cache content selection, the cache system adopts different cache pool management strategies in different levels of cache. The results of experiment in prototype system indicate that multi-level cache in this paper effectively increases the access bandwidth of small spatio-temporal files in Smart City and greatly improves service quality of multiple concurrent access in system. 展开更多
关键词 Smart City spatio-temporal data multi-level cache small file
原文传递
Spatio-Temporal Prediction of Root Zone Soil Moisture Using Multivariate Relevance Vector Machines
16
作者 Bushra Zaman Mac McKee 《Open Journal of Modern Hydrology》 2014年第3期80-90,共11页
Root zone soil moisture at one and two meter depths are forecasted four days into the future. In this article, we propose a new multivariate output prediction approach to root zone soil moisture assessment using learn... Root zone soil moisture at one and two meter depths are forecasted four days into the future. In this article, we propose a new multivariate output prediction approach to root zone soil moisture assessment using learning machine models. These models are known for their robustness, efficiency, and sparseness;they provide a statistically sound approach to solving the inverse problem and thus to building statistical models. The multivariate relevance vector machine (MVRVM) is used to build a model that forecasts soil moisture states based upon current soil moisture and soil temperature conditions. The methodology combines the data at different depths from 5 cm to 50 cm, the largest of which corresponds to the depth at which the soil moisture sensors are generally operational, to produce soil moisture predictions at larger depths. The MVRVM test results for soil moisture predictions at 1 m and 2 m depth on the 4th day are excellent with RMSE = 0.0131 m3/m3 for 1 m;and RMSE = 0.0015 m3/m3 for 2 m forecasted values. The statistics of predictions for 4th day (CoE = 0.87 for 1 m and CoE = 0.96 for 2 m) indicate good model generalization capability and computations show good agreement with actual measurements with R2 = 0.88 and R2 = 0.97 for 1 m and 2 m depths, respectively. The MVRVM produces good results for all four days. Bootstrapping is used to check over/under-fitting and uncertainty in model estimates. 展开更多
关键词 RELEVANCE vector Machines Statistics Predictions SOILS Soil MOISTURE data Management
暂未订购
Wi-Fi Positioning Dataset with Multiusers and Multidevices Considering Spatio-Temporal Variations
17
作者 Imran Ashraf Sadia Din +1 位作者 Soojung Hur Yongwan Park 《Computers, Materials & Continua》 SCIE EI 2022年第3期5213-5232,共20页
Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency id... Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered. 展开更多
关键词 Wi-fi positioning dataset smartphone sensors benchmark analysis indoor positioning and localization spatio-temporal data
在线阅读 下载PDF
Hotshots of Spatio-temporal Behavior of Chinese Residents in the Context of Big Data:Visual Analysis Based on CiteSpace
18
作者 LIU Tianlong WANG Fengyu JI Xiang 《Journal of Landscape Research》 2022年第5期47-51,共5页
By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline... By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”. 展开更多
关键词 Big data spatio-temporal behavior Visual analysis Hot topics TRENDS
在线阅读 下载PDF
“stppSim”: A Novel Analytical Tool for Creating Synthetic Spatio-Temporal Point Data
19
作者 Monsuru Adepeju 《Open Journal of Modelling and Simulation》 2023年第4期99-116,共18页
In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotempor... In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science. 展开更多
关键词 OPEN-SOURCE Synthetic data CRIME spatio-temporal Patterns data Privacy
在线阅读 下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
20
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
上一页 1 2 189 下一页 到第
使用帮助 返回顶部